To study the transport of the ionospheric plasma on Mars, we have included a 3-D multifluid dynamical core in a Martian general circulation model. Vertical transport modifies the ion density abovẽ 160 km on the dayside, especially the ions produced at high altitudes like O + , N + , and C + . Near the exobase, the dayside to nightside flow velocity reaches few hundreds of m/s, due to a large horizontal pressure gradient. Comparison with Mars Express/Analyzer of Space Plasmas and Energetic Atoms-3 measurements between 290 and 500 km suggests that this flow could account for at least 20% of the flow produced by the solar wind. This flow is not sufficient to populate substantially the nightside ionosphere at high altitudes, in agreement with recent observations, because of a strong nightside downward flow produced by vertical pressure gradient. The O 2 + and NO + ion densities on the nightside at low altitudes (~130 km) are modified by this downward flow, compared to simulated densities without ion dynamics, while other ions are lost by chemical reactions. Variability at different time scales (diurnal, seasonal, and solar cycles) are studied. We simulate diurnal and seasonal variations of the ionospheric composition due to the variability of the neutral atmosphere and solar flux at the top of the atmosphere. The ionospheric dynamics are not strongly affected by seasons and solar cycles, and the retroaction of the ionosphere on the neutral atmosphere temperature and velocity is negligible compared to other physical processes below the exobase.
The dynamics of the Jovian magnetosphere are controlled by the interplay of the planet's fast rotation, its main iogenic plasma source and its interaction with the solar wind. Magnetosphere‐Ionosphere‐Thermosphere (MIT) coupling processes controlling this interplay are significantly different from their Earth and Saturn counterparts. At the ionospheric level, they can be characterized by a set of key parameters: ionospheric conductances, electric currents and fields, exchanges of particles along field lines, Joule heating and particle energy deposition. From these parameters, one can determine (a) how magnetospheric currents close into the ionosphere, and (b) the net deposition/extraction of energy into/out of the upper atmosphere associated to MIT coupling. We present a new method combining Juno multi‐instrument data (MAG, JADE, JEDI, UVS, JIRAM and Waves) and modeling tools to estimate these key parameters along Juno's trajectories. We first apply this method to two southern hemisphere main auroral oval crossings to illustrate how the coupling parameters are derived. We then present a preliminary statistical analysis of the morphology and amplitudes of these key parameters for eight among the first nine southern perijoves. We aim to extend our method to more Juno orbits to progressively build a comprehensive view of Jovian MIT coupling at the level of the main auroral oval.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.