The molecular and neuronal substrates conferring on clozapine its unique and superior efficacy in the treatment of schizophrenia remain elusive. The interaction of clozapine with many G proteincoupled receptors is well documented but less is known about its biologically active metabolite, N-desmethylclozapine. Recent clinical and preclinical evidences of the antipsychotic activity of the muscarinic agonist xanomeline prompted us to investigate the effects of N-desmethylclozapine on cloned human M1-M5 muscarinic receptors. N-desmethylclozapine preferentially bound to M1 muscarinic receptors with an IC 50 of 55 nM and was a more potent partial agonist (EC50, 115 nM and 50% of acetylcholine response) at this receptor than clozapine. Furthermore, pharmacological and site-directed mutagenesis studies suggested that N-desmethylclozapine preferentially activated M1 receptors by interacting with a site that does not fully overlap with the acetylcholine orthosteric site. As hypofunction of N-methyl-D-aspartate (NMDA) receptordriven neuronal ensembles has been implicated in psychotic disorders, the neuronal activity of N-desmethylclozapine was electrophysiologically investigated in hippocampal rat brain slices. N-desmethylclozapine was shown to dose-dependently potentiate NMDA receptor currents in CA1 pyramidal cells by 53% at 100 nM, an effect largely mediated by activation of muscarinic receptors. Altogether, our observations provide direct evidence that the brain penetrant metabolite N-desmethylclozapine is a potent, allosteric agonist at human M1 receptors and is able to potentiate hippocampal NMDA receptor currents through M1 receptor activation. These observations raise the possibility that N-desmethylclozapine contributes to clozapine's clinical activity in schizophrenics through modulation of both muscarinic and glutamatergic neurotransmission.
Glycine acts as a necessary coagonist for glutamate at the NMDA receptor (NMDAR) complex by binding to the strychnine-insensitive glycine-B binding site on the NR1 subunit. The fact that glycine is normally found in the brain and spinal cord at concentrations that exceed those required to saturate this site has led to the speculation that glycine normally saturates NMDAR-containing synapses in vivo. However, additional lines of evidence suggest that synaptic glycine may be efficiently regulated in synaptic areas by the glycine transporter type 1 (GlyT1). The recent description of a potent and selective GlyT1 inhibitor (N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl]sarcosine [NFPS]) provides a tool for evaluation of the hypothesis that inhibition of GlyT1 may increase synaptic glycine and thereby potentiate NMDAR function in vivo. In the present study, we found that (+)-NFPS demonstrated >10-fold greater activity in an in vitro functional glycine reuptake assay relative to the racemic compound. In vivo, (+/-)-NFPS significantly enhanced long-term potentiation in the hippocampal dentate gyrus induced by high-frequency electrical stimulation of the afferent perforant pathway. Furthermore, (+)-NFPS induced a pattern of c-Fos immunoreactivity comparable with the atypical antipsychotic clozapine and enhanced prepulse inhibition of the acoustic startle response in DBA/2J mice, a strain with low basal levels of prepulse inhibition. Collectively, these data suggest that selective inhibition of GlyT1 can enhance NMDAR-sensitive activity in vivo and also support the idea that GlyT1 may represent a novel target for developing therapeutics to treat disorders associated with NMDAR hypofunction.
Mice deficient in the neurotensin (NT)-1 receptor (NTR1) were developed to characterize the NT receptor subtypes that mediate various in vivo responses to NT. F2 generation (C57BL6/ Sv129J) NTR1 knockout (Ϫ/Ϫ) mice were viable, and showed normal growth and overt behavior. The Ϫ/Ϫ mice lacked detectable NTR1 radioligand binding in brain, whereas NTR2 receptor binding density appeared normal compared with wildtype (ϩ/ϩ) mice. The gene deletion also resulted in the loss of NTR1 expression as determined by reverse transcription-polymerase chain reaction and in situ hybridization. Intracerebroventricular injection of NT (1 g) to ϩ/ϩ mice caused a robust hypothermic response (5-6°C) and a significant increase in hot-plate latency. These effects were absent in the Ϫ/Ϫ mice. Similar results were obtained with i.p. injections of the brainpenetrant NT analog NMe-Arg-Lys-Pro-Trp-Tle-Leu (NT-2, 1 mg/kg i.p.). NT-2 administration also impaired rotarod performance in wild-type mice, but had no effect on motor coordination in knockout mice. In vitro, NT and NT-2 at 30 nM caused predominantly contraction and relaxation in isolated distal colon and proximal ileum, respectively, from ϩ/ϩ mice, but no responses were observed with tissues from Ϫ/Ϫ mice. A similar loss of the contractile effects of NT was observed in the isolated stomach fundus from the knockout mice. In vivo, NT-2 administration reduced colonic propulsion substantially in wild-type mice. In contrast, NT-2 had no effect in NTR1 null mice, whereas the hypomotility effect of clonidine was intact. These data indicate that NTR1 mediates several of the central and peripheral effects of NT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.