We revisit lower bounds on the regret in the case of multi-armed bandit problems. We obtain non-asymptotic, distribution-dependent bounds and provide simple proofs based only on well-known properties of Kullback-Leibler divergences. These bounds show in particular that in the initial phase the regret grows almost linearly, and that the well-known logarithmic growth of the regret only holds in a final phase. The proof techniques come to the essence of the information-theoretic arguments used and they involve no unnecessary complications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.