BackgroundVerbal autopsy (VA) has been proposed to determine the cause of death (COD) distributions in settings where most deaths occur without medical attention or certification. We develop performance criteria for VA-based COD systems and apply these to the Registrar General of India’s ongoing, nationally-representative Indian Million Death Study (MDS).MethodsPerformance criteria include a low ill-defined proportion of deaths before old age; reproducibility, including consistency of COD distributions with independent resampling; differences in COD distribution of hospital, home, urban or rural deaths; age-, sex- and time-specific plausibility of specific diseases; stability and repeatability of dual physician coding; and the ability of the mortality classification system to capture a wide range of conditions.ResultsThe introduction of the MDS in India reduced the proportion of ill-defined deaths before age 70 years from 13% to 4%. The cause-specific mortality fractions (CSMFs) at ages 5 to 69 years for independently resampled deaths and the MDS were very similar across 19 disease categories. By contrast, CSMFs at these ages differed between hospital and home deaths and between urban and rural deaths. Thus, reliance mostly on urban or hospital data can distort national estimates of CODs. Age-, sex- and time-specific patterns for various diseases were plausible. Initial physician agreement on COD occurred about two-thirds of the time. The MDS COD classification system was able to capture more eligible records than alternative classification systems. By these metrics, the Indian MDS performs well for deaths prior to age 70 years. The key implication for low- and middle-income countries where medical certification of death remains uncommon is to implement COD surveys that randomly sample all deaths, use simple but high-quality field work with built-in resampling, and use electronic rather than paper systems to expedite field work and coding.ConclusionsSimple criteria can evaluate the performance of VA-based COD systems. Despite the misclassification of VA, the MDS demonstrates that national surveys of CODs using VA are an order of magnitude better than the limited COD data previously available.
BackgroundComputer-coded verbal autopsy (CCVA) methods to assign causes of death (CODs) for medically unattended deaths have been proposed as an alternative to physician-certified verbal autopsy (PCVA). We conducted a systematic review of 19 published comparison studies (from 684 evaluated), most of which used hospital-based deaths as the reference standard. We assessed the performance of PCVA and five CCVA methods: Random Forest, Tariff, InterVA, King-Lu, and Simplified Symptom Pattern.MethodsThe reviewed studies assessed methods’ performance through various metrics: sensitivity, specificity, and chance-corrected concordance for coding individual deaths, and cause-specific mortality fraction (CSMF) error and CSMF accuracy at the population level. These results were summarized into means, medians, and ranges.ResultsThe 19 studies ranged from 200 to 50,000 deaths per study (total over 116,000 deaths). Sensitivity of PCVA versus hospital-assigned COD varied widely by cause, but showed consistently high specificity. PCVA and CCVA methods had an overall chance-corrected concordance of about 50% or lower, across all ages and CODs. At the population level, the relative CSMF error between PCVA and hospital-based deaths indicated good performance for most CODs. Random Forest had the best CSMF accuracy performance, followed closely by PCVA and the other CCVA methods, but with lower values for InterVA-3.ConclusionsThere is no single best-performing coding method for verbal autopsies across various studies and metrics. There is little current justification for CCVA to replace PCVA, particularly as physician diagnosis remains the worldwide standard for clinical diagnosis on live patients. Further assessments and large accessible datasets on which to train and test combinations of methods are required, particularly for rural deaths without medical attention.
BackgroundVerbal autopsies (VA) are increasingly used in low- and middle-income countries where most causes of death (COD) occur at home without medical attention, and home deaths differ substantially from hospital deaths. Hence, there is no plausible “standard” against which VAs for home deaths may be validated. Previous studies have shown contradictory performance of automated methods compared to physician-based classification of CODs. We sought to compare the performance of the classic naive Bayes classifier (NBC) versus existing automated classifiers, using physician-based classification as the reference.MethodsWe compared the performance of NBC, an open-source Tariff Method (OTM), and InterVA-4 on three datasets covering about 21,000 child and adult deaths: the ongoing Million Death Study in India, and health and demographic surveillance sites in Agincourt, South Africa and Matlab, Bangladesh. We applied several training and testing splits of the data to quantify the sensitivity and specificity compared to physician coding for individual CODs and to test the cause-specific mortality fractions at the population level.ResultsThe NBC achieved comparable sensitivity (median 0.51, range 0.48-0.58) to OTM (median 0.50, range 0.41-0.51), with InterVA-4 having lower sensitivity (median 0.43, range 0.36-0.47) in all three datasets, across all CODs. Consistency of CODs was comparable for NBC and InterVA-4 but lower for OTM. NBC and OTM achieved better performance when using a local rather than a non-local training dataset. At the population level, NBC scored the highest cause-specific mortality fraction accuracy across the datasets (median 0.88, range 0.87-0.93), followed by InterVA-4 (median 0.66, range 0.62-0.73) and OTM (median 0.57, range 0.42-0.58).ConclusionsNBC outperforms current similar COD classifiers at the population level. Nevertheless, no current automated classifier adequately replicates physician classification for individual CODs. There is a need for further research on automated classifiers using local training and test data in diverse settings prior to recommending any replacement of physician-based classification of verbal autopsies.Electronic supplementary materialThe online version of this article (doi:10.1186/s12916-015-0521-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.