Chemotactic migration is a fundamental behavior of cells and its regulation is particularly relevant in physiological processes such as organogenesis and angiogenesis, as well as in pathological processes such as tumor metastasis. The majority of chemotactic stimuli activate cell surface receptors that belong to the G protein-coupled receptor (GPCR) superfamily. Although the autophagy machinery has been shown to play a role in cell migration, its mode of regulation by chemotactic GPCRs remains largely unexplored. We found that ligand-induced activation of 2 chemotactic GPCRs, the chemokine receptor CXCR4 and the urotensin 2 receptor UTS2R, triggers a marked reduction in the biogenesis of autophagosomes, in both HEK-293 and U87 glioblastoma cells. Chemotactic GPCRs exert their anti-autophagic effects through the activation of CAPNs, which prevent the formation of pre-autophagosomal vesicles from the plasma membrane. We further demonstrated that CXCR4- or UTS2R-induced inhibition of autophagy favors the formation of adhesion complexes to the extracellular matrix and is required for chemotactic migration. Altogether, our data reveal a new link between GPCR signaling and the autophagy machinery, and may help to envisage therapeutic strategies in pathological processes such as cancer cell invasion.
Astroglial cells are important actors in the defense of brain against oxidative stress injuries. Glial cells synthesize and release the octadecaneuropeptide ODN, a diazepam-binding inhibitor (DBI)-related peptide, which acts through its metabotropic receptor to protect neurons and astrocytes from oxidative stress-induced apoptosis. The purpose of the present study is to examine the contribution of the endogenous ODN in the protection of astrocytes and neurons from moderate oxidative stress. The administration of HO (50 μM, 6 h) induced a moderate oxidative stress in cultured astrocytes, i.e., an increase in reactive oxygen species, malondialdehyde, and carbonyl group levels, but it had no effect on astrocyte death. Mass spectrometry and QPCR analysis revealed that 50 μM HO increased ODN release and DBI mRNA levels. The inhibition of ODN release or pharmacological blockage of the effects of ODN revealed that in these conditions, 50 μM HO induced the death of astrocytes. The transfection of astrocytes with DBI siRNA increased the vulnerability of cells to moderate stress. Finally, the addition of 1 nM ODN to culture media reversed cell death observed in DBI-deficient astrocytes. The treatment of neurons with media from 50 μM HO-stressed astrocytes significantly reduced the neuronal death induced by HO; this effect is greatly attenuated by the administration of an ODN metabotropic receptor antagonist. Overall, these results indicate that astrocytes produce authentic ODN, notably in a moderate oxidative stress situation, and this glio- and neuro-protective agent may form part of the brain defense mechanisms against oxidative stress injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.