Nowadays, most of web services are accessed through HTTPS. While preserving user privacy is important, it is also mandatory to monitor and detect specific users' actions, for instance, according to a security policy. This paper presents a solution to monitor HTTP/2 traffic over TLS. It highly differs from HTTP/1.1 over TLS traffic what makes existing monitoring techniques obsolete. Our solution, H2Classifier, aims at detecting if a user performs an action that has been previously defined over a monitored web service, but without using any decryption. It is thus only based on passive traffic analysis and relies on random forest classifier. A challenge is to extract representative values of the loaded content associated to a web page, which is actually customized based on the user action. Extensive evaluations with five top used web services demonstrate the viability of our technique with an accuracy between 94% and 99%.
Encrypted HTTP/2 (h2) has been worldwide adopted since its official release in 2015. The major services over Internet use it to protect the user privacy against traffic interception. However, under the guise of privacy, one can hide the abnormal or even illegal use of a service. It has been demonstrated that machine learning algorithms combined with a proper set of features are still able to identify the incriminated traffic even when it is encrypted with h2. However, it can also be used to track normal service use and so endanger privacy of Internet users. Independently of the final objective, it is extremely important for a security practitioner to understand the efficiency of such a technique and its limit. No existing research has been achieved to assess how generic is it to be directly applicable to any service or website and how long an acceptable accuracy can be maintained.This paper addresses these challenges by defining an experimental methodology applied on more than 3000 different websites and also over four months continuously. The results highlight that an off-the-shelf machine-learning method to classify h2 traffic is applicable to many websites but a weekly training may be needed to keep the model accurate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.