TMC435 is a small-molecule inhibitor of the NS3/4A serine protease of hepatitis C virus (HCV) currently in phase 2 development. The in vitro resistance profile of TMC435 was characterized by selection experiments with HCV genotype 1 replicon cells and the genotype 2a JFH-1 system. In 80% (86/109) of the sequences from genotype 1 replicon cells analyzed, a mutation at NS3 residue D168 was observed, with changes to V or A being the most frequent. Mutations at NS3 positions 43, 80, 155, and 156, alone or in combination, were also identified. A transient replicon assay confirmed the relevance of these positions for TMC435 inhibitory activity. The change in the 50% effective concentrations (EC 50 s) observed for replicons with mutations at position 168 ranged from <10-fold for those with the D168G or D168N mutation to ϳ2,000-fold for those with the D168V or D168I mutation, compared to the EC 50 for the wild type. Of the positions identified, mutations at residue Q80 had the least impact on the activity of TMC435 (<10-fold change in EC 50 s), while greater effects were observed for some replicons with mutations at positions 43, 155, and 156. TMC435 remained active against replicons with the specific mutations observed after in vitro or in vivo exposure to telaprevir or boceprevir, including most replicons with changes at positions 36, 54, and 170 (<3-fold change in EC 50 s). Replicons carrying mutations affecting the activity of TMC435 remained fully susceptible to alpha interferon and NS5A and NS5B inhibitors. Finally, combinations of TMC435 with alpha interferon and NS5B polymerase inhibitors prevented the formation of drug-resistant replicon colonies.Hepatitis C is a blood-borne infection that can ultimately result in severe liver diseases, including fibrosis, cirrhosis, and hepatocellular carcinoma (7). The chronic nature of the disease and the significant possibility of long-term liver damage have led to the current global health burden, with an estimated 180 million people being infected, of whom 130 million are chronic hepatitis C virus (HCV) carriers (54).The current standard-of-care therapy for HCV-infected patients consists of a combination of weekly injected pegylated alpha interferon (Peg-IFN-␣) and twice-daily oral ribavirin. Treatment of HCV genotype 1-infected patients with this regimen for 48 weeks has a limited success rate (a 40 to 50% sustained virological response [SVR]) and is associated with a wide range of side effects, including flu-like symptoms, anemia, and depression, leading to treatment discontinuation in a significant proportion of patients (31, 48). Therefore, specifically targeted antiviral therapies for hepatitis C (STAT-C) have been a major focus of drug discovery efforts. Treatments with several NS3/4A protease inhibitors and NS5A and NS5B polymerase inhibitors, alone or in combination with Peg-IFN-␣-ribavirin, have recently shown encouraging results in clinical trials (17,36).HCV NS3 is an essential, bifunctional, multidomain protein that possesses protease and RNA helicase activiti...
Hepatitis C virus is a blood-borne infection and the leading cause of chronic liver disease (including cirrhosis and cancer) and liver transplantation. Since the identification of HCV in 1989, there has been an extensive effort to identify and improve treatment options. An important milestone was reached in 2011 with the approval of the first-generation HCV NS3/4A protease inhibitors. However, new therapies are needed to improve cure rates, shorten treatment duration, and improve tolerability. Here we summarize the extensive medicinal chemistry effort to develop novel P2 cyclopentane macrocyclic inhibitors guided by HCV NS3 protease assays, the cellular replicon system, structure-based design, and a panel of DMPK assays. The selection of compound 29 (simeprevir, TMC435) as clinical candidate was based on its excellent biological, PK, and safety pharmacology profile. Compound 29 has recently been approved for treatment of chronic HCV infection in combination with pegylated interferon-α and ribavirin in Japan, Canada, and USA.
The hepatitis C virus (HCV) NS3/4A serine protease has been explored as a target for the inhibition of viral replication in preclinical models and in HCV-infected patients. TMC435350 is a highly specific and potent inhibitor of NS3/4A protease selected from a series of novel macrocyclic inhibitors. In biochemical assays using NS3/4A proteases of genotypes 1a and 1b, inhibition constants of 0.5 and 0.4 nM, respectively, were determined. TMC435350 inhibited HCV replication in a cellular assay (subgenomic 1b replicon) with a half-maximal effective concentration (EC 50 ) of 8 nM and a selectivity index of 5,875. The compound was synergistic with alpha interferon and an NS5B inhibitor in the replicon model and additive with ribavirin. In rats, TMC435350 was extensively distributed to the liver and intestinal tract (tissue/plasma area under the concentration-time curve ratios of >35), and the absolute bioavailability was 44% after a single oral administration. Compound concentrations detected in both plasma and liver at 8 h postdosing were above the EC 99 value measured in the replicon. In conclusion, given the selective and potent in vitro anti-HCV activity, the potential for combination with other anti-HCV agents, and the favorable pharmacokinetic profile, TMC435350 has been selected for clinical development.
Dengue virus (DENV) causes ~96 million symptomatic infections annually, manifesting as dengue fever or occasionally as severe dengue 1,2 . There are no antivirals available to prevent or treat dengue. We describe a highly potent DENV inhibitor (JNJ-A07) that exerts nano-to picomolar activity against a panel of 21 clinical isolates, representing the natural genetic diversity of known geno-and serotypes. The molecule has a high barrier to resistance and prevents the formation of the viral replication complex by blocking the interaction between two viral proteins (NS3 and NS4B), thus unveiling an entirely novel mechanism of antiviral action. JNJ-A07 has an excellent pharmacokinetic profile that results in outstanding efficacy against DENV infection in mouse infection models. Delaying start of treatment until peak viremia results in a rapid and significant reduction in viral load. An analogue is currently in further development. MAIN TEXTDengue is currently considered one of the top10 global health threats 1 . Annually, an estimated 96 million develop dengue disease 2 , which is likely an underestimation [3][4][5] . The incidence has increased ~30-fold over the past 50 years. The virus is endemic in 128 countries in (sub-)tropical regions, with an estimated 3.9 billion people at risk of infection. A recent study predicts an increase to 6.1 billion people at risk by 2080 6 . The upsurge is driven by factors such as rapid urbanization and the sustained spread of the mosquito vectors [6][7][8] . DENV has four serotypes (further classified into genotypes), which are increasingly co-circulating in endemic regions. A second infection with a different serotype increases the risk of severe dengue 9,10 . The vaccine Dengvaxia ® , which is approved in a number of countries for those aged ≥9 years, is only recommended for those with previous dengue exposure 11,12,13 . There are no antivirals for the prevention or treatment of dengue; the development of pan-serotype DENV inhibitors has proven challenging 14,15 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.