Large Eddy Simulation (LES) is an approach to compute turbulent flows based on resolving the unsteady large-scale motion of the fluid while the impact of the small-scale turbulence on the large scales is accounted for by a sub-grid scale model. This model distinguishes LES from any other method and reduces the computational demands compared with a Direct Numerical Simulation. On the other hand, the cost typically is still at least an order of magnitude larger than for steady Reynolds-averaged computations. The LES approach is attractive when statistical turbulence models fail, when insight into the vortical dynamics or unsteady forces on a body is desired, or when additional features are involved such as large-scale mixing, particle transport, sound generation etc. In recent years the rapid increase of computer power has made LES accessible to a broader scientific community, and this is reflected in an abundance of papers on the method and its applications. Still, however, some fundamental aspects of LES are not conclusively settled, a fact residing in the intricate coupling between mathematical, physical, numerical and algorithmic issues. In this situation it is of great importance to gain an overview of the available approaches and techniques.Pierre Sagaut, in the style of a French encyclopedist, gives a very complete and exhaustive treatment of the different kinds of sub-grid scale models which have been developed so far. After discussing the separation into resolved and unresolved scales and its application to the Navier-Stokes equations, more than 140 pages are directly devoted to the description of sub-grid scale models. They are classified according to different criteria, which helps the reader to find his or her way through the arsenal of reasonings. The theoretical framework for which these models have mostly been developed is isotropic turbulence. The required notions from classical turbulence theory are summarized together with notions from EDQNM theory in two concise and helpful appendices. Further sections deal with numerical and implementational issues, boundary conditions and validation practice. A final section assembles a few key applications, cumulating in a condensed list of some general experiences gained so far.The book very wisely concentrates on issues particular to LES, which to a large extent is sub-grid scale modelling. Classical issues of CFD, such as numerical discretization schemes, solution procedures etc, or post-processing are not addressed. Limiting himself to incompressible, non-reactive flows, the author succeeds in describing the fundamental issues in great detail, thus laying the foundations for the understanding of more complex situations. The presentation is essentially theoretical and the reader should have some prior knowledge of turbulence theory and Fourier transforms. The text itself is well written and generally very clear. A pedagogical effort is made in several places, e.g. when an overview over a group of models is given before these are described in ...
This book summarizes the most recent theoretical, computational, and experimental results dealing with homogeneous turbulence dynamics. A large class of flows is covered: flows governed by anisotropic production mechanisms (e.g., shear flows) and flows without production but dominated by waves (e.g., homogeneous rotating or stratified turbulence). Compressible turbulent flows are also considered. In each case, main trends are illustrated using computational and experimental results, and both linear and nonlinear theories and closures are discussed. Details about linear theories (e.g., Rapid Distortion Theory and variants) and nonlinear closures (e.g., EDQNM) are provided in dedicated chapters, following a fully unified approach. The emphasis is on homogeneous flows, including several interactions (rotation, stratification, shear, shock waves, acoustic waves, and more) that are pertinent to many applications fields -from aerospace engineering to astrophysics and Earth sciences.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.