Chiral systems are a class of structures, which may exhibit the anomalous property of a negative Poisson's ratio. Proposed by Wojciechowski and implemented later by Lakes, these structures have aroused interest due to their remarkable mechanical properties and numerous potential applications. In view of this, this paper investigates the on-axis mechanical properties of the general forms of the flexing anti-tetrachiral system through analytical and finite element models. The results suggest that these are highly dependent on the geometry (the ratio of ligament lengths, thicknesses, and radius of nodes) and material properties of the constituent materials. We also show that the rigidity of an anti-tetrachiral system can be changed without altering the Poisson's ratio.The anti-tetrachiral system, with the unit cell shown in red.
We analyse the anisotropic thermal expansion properties of a two-dimensional structurally rigid construct made from rods of different materials connected together through hinges to form triangular units. In particular, we show that this system may be made to exhibit negative thermal expansion coefficients along certain directions or thermal expansion coefficients that are even more positive than any of the component materials. The end product is a multifunctional system with tunable thermal properties that can be tailor-made for particular practical applications.peer-reviewe
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.