In this paper we develop a branch-and-bound algorithm for solving a particular integer quadratic multi-knapsack problem. The problem we study is defined as the maximization of a concave separable quadratic objective function over a convex set of linear constraints and bounded integer variables. Our exact solution method is based on the computation of an upper bound and also includes pre-procedure techniques in order to reduce the problem size before starting the branch-and-bound process. We lead a numerical comparison between our method and three other existing algorithms. The approach we propose outperforms other procedures for large-scaled instances (up to 2000 variables and constraints).
We obtain optimal lower and upper bounds for the (additive) integrality gaps of integer knapsack problems. In a randomised setting, we show that the inte-grality gap of a "typical" knapsack problem is drastically smaller than the integrality gap that occurs in a worst case scenario.
Our search deals with methods hybridizing interior point processes and metaheuristics for solving 0-1 linear programs. This paper shows how metaheuristics can take advantage of a sequence of interior points generated by an interior point method. After introducing our work field, we present our hybrid search which generates a diversified population. Next, we explain the whole method combining the solutions encountered in the previous phase through a path relinking template. Computational experiments are reported on 0-1 multiconstraint knapsack problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.