To define the genetic landscape of advanced differentiated and anaplastic thyroid cancer (ATC) and identify genetic alterations of potential diagnostic, prognostic, and therapeutic significance. The genetic profiles of 583 advanced differentiated and 196 ATCs generated with targeted next-generation sequencing cancer-associated gene panels MSK-IMPACT and FoundationOne were analyzed. ATC had more genetic alterations per tumor, and pediatric papillary thyroid cancer had fewer genetic alterations per tumor when compared with other thyroid cancer types. DNA mismatch repair deficit and activity of APOBEC cytidine deaminases were identified as mechanisms associated with high mutational burden in a subset of differentiated thyroid cancers and ATCs. Copy number losses and mutations of and, amplification of , amplification of receptor tyrosine kinase genes, and , amplification of immune evasion genes, and , and activating point mutations in small GTPase were associated with ATC. An association of , and amplification with the sensitivity of thyroid cancer cells to lenvatinib was shown Three genetically distinct types of ATCs are proposed. This large-scale analysis describes genetic alterations in a cohort of thyroid cancers enriched in advanced cases. Many novel genetic events previously not seen in thyroid cancer were found. Genetic alterations associated with anaplastic transformation were identified. An updated schematic of thyroid cancer genetic evolution is proposed. .
BackgroundEstrogen receptor-positive (ER-positive) metastatic breast cancer is often intractable due to endocrine therapy resistance. Although ESR1 promoter switching events have been associated with endocrine-therapy resistance, recurrent ESR1 fusion proteins have yet to be identified in advanced breast cancer.Patients and methodsTo identify genomic structural rearrangements (REs) including gene fusions in acquired resistance, we undertook a multimodal sequencing effort in three breast cancer patient cohorts: (i) mate-pair and/or RNAseq in 6 patient-matched primary-metastatic tumors and 51 metastases, (ii) high coverage (>500×) comprehensive genomic profiling of 287–395 cancer-related genes across 9542 solid tumors (5216 from metastatic disease), and (iii) ultra-high coverage (>5000×) genomic profiling of 62 cancer-related genes in 254 ctDNA samples. In addition to traditional gene fusion detection methods (i.e. discordant reads, split reads), ESR1 REs were detected from targeted sequencing data by applying a novel algorithm (copyshift) that identifies major copy number shifts at rearrangement hotspots.ResultsWe identify 88 ESR1 REs across 83 unique patients with direct confirmation of 9 ESR1 fusion proteins (including 2 via immunoblot). ESR1 REs are highly enriched in ER-positive, metastatic disease and co-occur with known ESR1 missense alterations, suggestive of polyclonal resistance. Importantly, all fusions result from a breakpoint in or near ESR1 intron 6 and therefore lack an intact ligand binding domain (LBD). In vitro characterization of three fusions reveals ligand-independence and hyperactivity dependent upon the 3′ partner gene. Our lower-bound estimate of ESR1 fusions is at least 1% of metastatic solid breast cancers, the prevalence in ctDNA is at least 10× enriched. We postulate this enrichment may represent secondary resistance to more aggressive endocrine therapies applied to patients with ESR1 LBD missense alterations.ConclusionsCollectively, these data indicate that N-terminal ESR1 fusions involving exons 6–7 are a recurrent driver of endocrine therapy resistance and are impervious to ER-targeted therapies.
Over-expression of AND-34/BCAR3/NSP2 (BCAR3) or its binding-partner p130Cas/BCAR1 generates anti-estrogen resistance in human breast cancer lines. Here, we have compared BCAR3 to two related homologs, NSP1 and NSP3/CHAT/SHEP, with regards to expression, anti-estrogen resistance, and signaling. BCAR3 is expressed at higher levels in ERα-negative, mesenchymal, than in ERα-positive, epithelial, breast cancer cell lines. Characterization of "intermediate" epithelial-like cell lines with variable ER-α expression reveals that BCAR3 expression correlates with both mesenchymal and ERα-negative phenotypes. Levels of the BCAR3/p130Cas complex correlate more strongly with the ERα-negative, mesenchymal phenotype than levels of either protein alone. NSP1 and NSP3 are expressed at lower levels than BCAR3 and without correlation to ERα/mesenchymal status. Among NSP-transfectants, only BCAR3 transfectants induce anti-estrogen resistance and augment transcription of cyclin D1 promoter constructs. Over-expression of all homologs results in activation of Rac, Cdc42 and Akt, suggesting that these signals are insufficient to induce anti-estrogen resistance. BCAR3 but not NSP1 nor NSP3 transfectants show altered morphology, transitioning from polygonal cell groups to rounded, single cells with numerous blebs. Whereas stable overexpression of BCAR3 in MCF-7 cells does not lead to classic epithelial-to-mesenchymal transition, it does result in down-regulation of cadherin-mediated adhesion and augmentation of fibronectin expression. These studies suggest that BCAR3's ability to induce anti-estrogen resistance is greater than that of other NSP homologs and may result from altered interaction of breast cancer cells with each other and the extracellular matrix.
NSP protein family members associate with p130Cas, a focal adhesion adapter protein best known as a Src substrate that integrates adhesion-related signaling. Over-expression of AND-34/BCAR3/ NSP2 (BCAR3), but not NSP1 or NSP3, induces anti-estrogen resistance in human breast cancer cell lines. BCAR3 over-expression in epithelial MCF-7 cells augments levels of a phosphorylated p130Cas species that migrates more slowly on SDS PAGE while NSP-1 and NSP3 induce modest or no phosphorylation, respectively. Conversely, reduction in BCAR3 expression in mesenchymal MDA-231 cells by inducible shRNA results in loss of such p130Cas phosphorylation. Replacement of NSP3's serine/proline-rich domain with that of AND-34/BCAR3 instills the ability to induce p130Cas phosphorylation. Phospho-amino acid analysis demonstrates that BCAR3 induces p130Cas serine phosphorylation. Mass spectrometry identified phosphorylation at p130Cas serines 139, 437 and 639. p130Cas serine phosphorylation accumulates for several hours after adhesion of MDA-231 cells to fibronectin and is dependent upon BCAR3 expression. BCAR3 knockdown alters p130Cas localization and converts MDA-231 growth to an epithelioid pattern characterized by striking cohesiveness and lack of cellular projections at colony borders. These studies demonstrate that BCAR3 regulates p130Cas serine phosphorylation that is adhesion-dependent, temporally distinct from previously well-characterized rapid Fak and Src kinase-mediated p130Cas tyrosine phosphorylation and that correlates with invasive phenotype.
The interaction of programmed cell death-1 and its ligand is widely studied in cancer. Monoclonal antibodies blocking these molecules have had great success but little is known about them in thyroid cancer. We investigated the role of PD-L1 in thyroid cancer with respect to BRAF mutation and MAP kinase pathway activity and the effect of anti PD-L1 antibody therapy on tumor regression and intra-tumoral immune response alone or in combination with BRAF inhibitor (BRAFi). BRAFV600E cells showed significantly higher baseline expression of PD-L1 at mRNA and protein levels compared to BRAFWT cells. MEK inhibitor treatment resulted in a decrease of PD-L1 expression across all cell lines. BRAFi treatment decreased PD-L1 expression in BRAFV600E cells, but paradoxically increased its expression in BRAFWT cells. BRAFV600E mutated patients samples had a higher level of PD-L1 mRNA compared to BRAFWT (p=0.015). Immunocompetent mice (B6129SF1/J) implanted with syngeneic 3747 BRAFV600E/WT P53−/− murine tumor cells were randomized to control, PLX4720, anti PD-L1 antibody and their combination. In this model of aggressive thyroid cancer, control tumor volume reached 782.3±174.6mm3 at two weeks. The combination dramatically reduced tumor volume to 147.3±60.8, compared to PLX4720 (439.3±188.4 mm3, P=0.023) or PD-L1 antibody (716.7±62.1, P<0.001) alone. Immunohistochemistry analysis revealed intense CD8+ CTL infiltration and cytotoxicity and favorable CD8+:Treg ratio compared to each individual treatment. Our results show anti PD-L1 treatment potentiates the effect of BRAFi on tumor regression and intensifies anti tumor immune response in an immunocompetent model of ATC. Clinical trials of this therapeutic combination may be of benefit in patients with ATC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.