Around the world, electricity systems are transitioning towards renewable energy to meet humanity's climate change mitigation targets. However, in a pretransition system, the carbon intensity of power exhibits strong variations over time, which calls for load shifting to times when its impact is lower. In this work, the case of heating in single-family houses is studied, using Model Predictive Control (MPC) to optimise multi-zone operation. Low inertia heating is used, and simulations are made upon three different insulation level using historical grid and climate data from Denmark. The results show that energy and CO 2 optimisation are relevant objectives for predictive control for lowering the carbon footprint of heating, while SPOT price optimisation is comparatively undesirable. However, benefits of energy optimisation were questioned, as a well-tuned PID control might have had similar performance. Nevertheless, gains from CO 2 optimisation in recent houses highlight the importance of considering the average carbon intensity of energy used, in addition to the amount of energy itself, when aiming to reduce the carbon footprint.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.