Biological membrane fluidity and thus the local viscosity in lipid membranes are of vital importance for many life processes and implicated in various diseases. Here, we introduce a novel viscosity sensor design for lipid membranes based on a reporting nanoparticle, a sulfated dendritic polyglycerol (dPGS), conjugated to a fluorescent molecular rotor, indocarbocyanine (ICC). We show that dPGS-ICC provides high affinity to lipid bilayers, enabling viscosity sensing in the lipid tail region. The systematic characterization of viscosity-and temperature-dependent photoisomerization properties of ICC and dPGS-ICC allowed us to determine membrane viscosities in different model systems and in living cells using fluorescence lifetime imaging (FLIM). dPGS-ICC distinguishes between ordered lipids and the onset of membrane defects in small unilamellar single lipid vesicles and is highly sensitive in the fluid phase to small changes in viscosity introduced by cholesterol. In microscopy-based viscosity measurements of large multilamellar vesicles, we observed an order of magnitude more viscous environments by dPGS-ICC, lending support to the hypothesis of heterogeneous nanoviscosity environments even in single lipid bilayers. The existence of such complex viscosity structures could explain the large variation in the apparent membrane viscosity values found in the literature, depending on technique and probe, both for model membranes and live cells. In HeLa cells, a tumor-derived cell line, our nanoparticle-based viscosity sensor detects a membrane viscosity of ∼190 cP and is able to discriminate between cell membrane and intracellular vesicle localization. Thus, our results show the versatility of the dPGS-ICC nano-conjugate in physicochemical and biomedical applications by adding a new analytical functionality to its medical properties.
The rapid development of microscopic techniques over the past decades enables the establishment of single molecule fluorescence imaging as a powerful tool in biological and biomedical sciences. Single molecule fluorescence imaging allows to study the chemical, physicochemical, and biological properties of target molecules or particles by tracking their molecular position in the biological environment and determining their dynamic behavior. However, the precise determination of particle distribution and diffusivities is often challenging due to high molecule/particle densities, fast diffusion, and photobleaching/blinking of the fluorophore. A novel, accurate, and fast statistical analysis tool, Diffusion Analysis of NAnoscopic Ensembles (DANAE), that solves all these obstacles is introduced. DANAE requires no approximations or any a priori input regarding unknown system‐inherent parameters, such as background distributions; a requirement that is vitally important when studying the behavior of molecules/particles in living cells. The superiority of DANAE with various data from simulations is demonstrated. As experimental applications of DANAE, membrane receptor diffusion in its natural membrane environment, and cargo mobility/distribution within nanostructured lipid nanoparticles are presented. Finally, the method is extended to two‐color channel fluorescence microscopy.
Diffusion Analysis of NAnoscopic Ensembles (DANAE) offers an assumption-and trackingfree approach to determine the diffusivities of single molecules/particles despite high densities, fast diffusion or photobleaching/blinking, which is possible through a novel treatment of the background function. More details can be found in article number 2206722 by Ulrike Alexiev and co-workers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.