OBJECTIVETo demonstrate that Diabeo software enabling individualized insulin dose adjustments combined with telemedicine support significantly improves HbA1c in poorly controlled type 1 diabetic patients.RESEARCH DESIGN AND METHODSIn a six-month open-label parallel-group, multicenter study, adult patients (n = 180) with type 1 diabetes (>1 year), on a basal-bolus insulin regimen (>6 months), with HbA1c ≥8%, were randomized to usual quarterly follow-up (G1), home use of a smartphone recommending insulin doses with quarterly visits (G2), or use of the smartphone with short teleconsultations every 2 weeks but no visit until point end (G3).RESULTSSix-month mean HbA1c in G3 (8.41 ± 1.04%) was lower than in G1 (9.10 ± 1.16%; P = 0.0019). G2 displayed intermediate results (8.63 ± 1.07%). The Diabeo system gave a 0.91% (0.60; 1.21) improvement in HbA1c over controls and a 0.67% (0.35; 0.99) reduction when used without teleconsultation. There was no difference in the frequency of hypoglycemic episodes or in medical time spent for hospital or telephone consultations. However, patients in G1 and G2 spent nearly 5 h more than G3 patients attending hospital visits.CONCLUSIONSThe Diabeo system gives a substantial improvement to metabolic control in chronic, poorly controlled type 1 diabetic patients without requiring more medical time and at a lower overall cost for the patient than usual care.
Aims/hypothesis This is an update of the results from the previous report of the CORONADO (Coronavirus SARS-CoV-2 and Diabetes Outcomes) study, which aims to describe the outcomes and prognostic factors in patients with diabetes hospitalised for coronavirus disease-2019 (COVID-19). Methods The CORONADO initiative is a French nationwide multicentre study of patients with diabetes hospitalised for COVID-19 with a 28-day follow-up. The patients were screened after hospital admission from 10 March to 10 April 2020. We mainly focused on hospital discharge and death within 28 days. Results We included 2796 participants: 63.7% men, mean age 69.7 ± 13.2 years, median BMI (25th–75th percentile) 28.4 (25.0–32.4) kg/m2. Microvascular and macrovascular diabetic complications were found in 44.2% and 38.6% of participants, respectively. Within 28 days, 1404 (50.2%; 95% CI 48.3%, 52.1%) were discharged from hospital with a median duration of hospital stay of 9 (5–14) days, while 577 participants died (20.6%; 95% CI 19.2%, 22.2%). In multivariable models, younger age, routine metformin therapy and longer symptom duration on admission were positively associated with discharge. History of microvascular complications, anticoagulant routine therapy, dyspnoea on admission, and higher aspartate aminotransferase, white cell count and C-reactive protein levels were associated with a reduced chance of discharge. Factors associated with death within 28 days mirrored those associated with discharge, and also included routine treatment by insulin and statin as deleterious factors. Conclusions/interpretation In patients with diabetes hospitalised for COVID-19, we established prognostic factors for hospital discharge and death that could help clinicians in this pandemic period. Trial registration Clinicaltrials.gov identifier: NCT04324736 Graphical abstract
Multipotential stem cells can be selected from the bone marrow by plastic adhesion, expanded, and cultured. They are able to differentiate not only into multiple cell types, including cartilage, bone, adipose and fibrous tissues, and myelosupportive stroma, but also into mesodermal (endothelium), neuroectodermal, or endodermal (hepatocytes) lineages. Our goal was to characterize the multipotential capacities of human mesenchymal stem cells (hMSCs) and to evaluate their ability to differentiate into insulin-secreting cells in vitro. hMSCs were obtained from healthy donors, selected by plastic adhesion, and phenotyped by fluorescence-activated cell sorter and reverse transcription-polymerase chain reaction analysis before and after infection with adenoviruses coding for mouse IPF1, HLXB9, and FOXA2 transcription factors involved early in the endocrine developmental pathway. We found that native hMSCs have a pluripotent phenotype (OCT4 expression and high telomere length) and constitutively express NKX6-1 at a low level but lack all other transcription factors implicated in beta-cell differentiation. In all hMSCs, we detected mRNA of cytokeratin 18 and 19, epithelial markers present in pancreatic ductal cells, whereas proconvertase 1/3 mRNA expression was detected only in some hMSCs. Ectopic expression of IPF1, HLXB9, and FOXA2 with or without islet coculture or islet-conditioned medium results in insulin gene expression. In conclusion, our results demonstrated that in vitro human bone marrow stem cells are able to differentiate into insulin-expressing cells by a mechanism involving several transcription factors of the beta-cell developmental pathway when cultured in an appropriate microenvironment. Stem Cells 2005;23:594-604
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.