The permanent and presently rising lava lake at Mount Nyiragongo constitutes a major potential geological hazard to the inhabitants of the Virunga volcanic region in the Democratic Republic of Congo (DRC) and Rwanda. Based on two field campaigns in June 2010 and 2011, we estimate the lava lake level from the southeastern crater rim (~400 m diameter) and lava lake area (~46,550 m 2 ), which constrains, respectively, the lava lake volume (~9 × 10 6 m 3 ) and volume flow rate needed to keep the magma in a molten state (0.6 to 3.5 m 3 s À1
The shield volcano Erta'Ale, situated in the Danakil Depression, Ethiopia, is known for its active lava lake. In February 2001, our team visited this lake, located inside an 80-m-deep pit, to perform field temperature measurements. The distribution and variation of temperature inside the lake were obtained on the basis of infrared radiation measurements performed from the rim of the pit and from the lake shores. The crust temperature was also determined from the lake shores with a thermocouple to calibrate the pyrometer. We estimated an emissivity of the basalt of 0.74 from this experiment. Through the application of the Stefan-Boltzmann law, we then obtained an estimate of the total radiative heat flux, constrained by pyrometer measurements of the pit, and visual observations of the lake activity. Taking into account the atmospheric convective heat flux, the convected magma mass flux needed to balance the energy budget was subsequently derived and found to represent between 510 and 580 kg s -1 . The surface circulation of this mass flux was also analyzed through motion processing techniques applied to video images of the lake. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.
Nyiragongo volcano is known for its active lava lake and for socioeconomic issues arising from future possible eruptive events having major impacts on the community living in the Virunga region. The 2020 field expedition inside the summit crater has allowed the collection of unprecedented field observations to state on the current activity. Since the February 2016 intracrater event, the crater floor level has been rising much faster than during the 2010–2016 period. The current activity is reminiscent of the 1970–1972 and 1994–1995 periods preceding the lava lake drainage events in 1977 and 2002. Numerical simulations, successfully validated with data over the past 30 years, show that the rising of the crater floor could slow down in the next months/years and reach a critical equilibrium. Based on the past eruptive history and on the current activity, a flank eruption in the March 2024 to November 2027 interval could be a possible scenario.
We develop a theory for the temporal integration of visual motion motivated by psychophysical experiments. The theory proposes that input data are temporally grouped and used to predict and estimate the motion flows in the image sequence.This temporal grouping can be considered a generalization of the data association techniques used by engineers to study motion sequences. Our temporal-grouping theory is expressed in terms of the Bayesian generalization of standard Kalman filtering. To implement the theory we derive a parallel network which shares some properties of cortical networks. Computer simulations of this network demonstrate that our theory qualitatively accounts for psychophysical experiments on motion occlusion and motion outliers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.