The main objective of this paper is to prove the monodromy conjecture for the local Igusa zeta function of a quasi-ordinary polynomial of arbitrary dimension defined over a number field. In order to do it, we compute the local Denef-Loeser motivic zeta function Z DL (h, T ) of a quasi-ordinary power series h of arbitrary dimension over an algebraically closed field of characteristic zero from its characteristic exponents without using embedded resolution of singularities. This allows us to effectively represent Z DL (h, T ) = P (T )/Q(T ) such that almost all the candidate poles given by Q(T ) are poles. Anyway, these candidate poles give eigenvalues of the monodromy action of the complex of nearby cycles on h −1 (0). In particular we prove in this case the monodromy conjecture made by Denef-Loeser for the local motivic zeta function and the local topological zeta function. As a consequence, if h is a quasi-ordinary polynomial defined over a number field we prove the Igusa monodromy conjecture for its local Igusa zeta function.
ABSTRACT. -In this work we give a formula for the local Denef-Loeser zeta function of a superisolated singularity of hypersurface in terms of the local Denef-Loeser zeta function of the singularities of its tangent cone. We prove the monodromy conjecture for some surfaces singularities. These results are applied to the study of rational arrangements of plane curves whose Euler-Poincaré characteristic is three.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.