Despite the great potential of design of experiments (DoE) for efficiency and plannability in academic research, it remains a method predominantly used in industrial processes. From our perspective though, DoE additionally provides greater information gain than conventional experimentation approaches, even for more complex systems such as chemical reactions. Hence, this work presents a comprehensive DoE investigation on thermally initiated reversible addition–fragmentation chain transfer (RAFT) polymerization of methacrylamide (MAAm). To facilitate the adaptation of DoE for virtually every other polymerization, this work provides a step-by-step application guide emphasizing the biggest challenges along the way. Optimization of the RAFT system was achieved via response surface methodology utilizing a face-centered central composite design (FC-CCD). Highly accurate prediction models for the responses of monomer conversion, theoretical and apparent number averaged molecular weights, and dispersity are presented. The obtained equations not only facilitate thorough understanding of the observed system but also allow selection of synthetic targets for each individual response by prediction of the respective optimal factor settings. This work successfully demonstrates the great capability of DoE in academic research and aims to encourage fellow scientists to incorporate the technique into their repertoire of experimental strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.