A replaceable polymer matrix, based on the novel monomer N-hydroxyethylacrylamide (HEA), has been synthesized for application in DNA separation by microchannel electrophoresis. The monomer was found by micellar electrokinetic chromatography analysis of monomer partitioning between water and 1-octanol to be more hydrophilic than acrylamide and N,N-dimethylacrylamide. Polymers were synthesized by free radical polymerization in aqueous solution. The weight-average molar mass of purified polymer was characterized by tandem gel permeation chromatography-multiangle laser light scattering. The steady-shear rheological behavior of the novel DNA sequencing matrix was also characterized, and it was found that the viscosity of the novel matrix decreases by more than 2 orders of magnitude as the shear rate is increased from 0.1 to 1000 s(-1). Moreover, in the shear-thinning region, the rate of change of matrix viscosity with shear rate increases with increasing polymer concentration. Poly-N-hydroxyethylacrylamide (PHEA) exhibits good capillary-coating ability, via adsorption from aqueous solution, efficiently suppressing electroosmotic flow (EOF) in a manner comparable to that of poly-N,N-dimethylacrylamide. Under DNA sequencing conditions, adsorptive PHEA coatings proved to be stable and to maintain negligible EOF for over 600 h of electrophoresis. Resolution of DNA sequencing fragments, particularly fragments > 500 bases, in PHEA matrices generally improves with increasing polymer concentration and decreasing electric field strength. When PHEA is used both as a separation matrix and as a dynamic coating in bare silica capillaries, the matrix can resolve over 620 bases of contiguous DNA sequence within 3 h. These results demonstrate the good potential of PHEA matrices for high-throughput DNA analysis by microchannel electrophoresis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.