As part of the European Project on Cloud Systems in Climate Models, the diurnal cycle of stratocumulus has been simulated with Large-Eddy Simulation (LES) models and Single Column Models (SCMs). The models were initialized and compared with observations collected in marine stratocumulus in July 1987 during the First International Satellite Cloud Climatology Project Regional Experiment. The results of the six LES models are found to be in a fair agreement with the observations. They all capture the distinct diurnal variation in the cloud liquid-water path, the turbulence profiles and clearly show a decoupled boundary layer during daytime and a vertically well-mixed boundary layer during the night. Entrainment of relatively dry and warm air from just above the inversion into the boundary layer is the major process modifying the thermodynamic structure of the boundary layer during the night. The differences that arise in the liquid-water path evolution can therefore be attributed mainly to differences in the entrainment rate. The mean entrainment rates computed from the LES model results are 0.58 +/- 0.08 cm s(-1) and 0.36 +/- 0.03 cm s(-1) for the night-time and daytime periods, respectively. If the horizontal domain size in a LES model is enlarged, mesoscale fluctuations develop. This leads to a broader liquid-water path distribution and a reduction of the cloud albedo. To assess the quality of the representation of stratocumulus in general-circulation models, results from ten SCMs are compared with observations and LES results. The SCM latent and sensible heat fluxes at the surface agree fairly well with the LES results. Many of the SCMs predict a liquid-water path which is much too low, a cloud cover smaller than unity, and cloud tops that are lower than the observations and the LES results. This results in a much larger amount of downwelling short-wave radiation absorbed at the sea surface. Improvement of entrainment parametrizations is needed for a better representation of stratocumulus in SCMs. Observations and LES results of entrainment rates for different stratocumulus cases are compared. The observed entrainment rates in Atlantic stratocumulus clouds during the Atlantic Stratocumulus Transition Experiment (ASTEX) are larger than for the ones over the Pacific Ocean off the coast of California. Results from LES models corroborate these findings. The differences in the entrainment rate can likely be attributed to the smaller inversion jumps of the liquid-water potential temperature for the ASTEX stratocumulus case
Data on the lateral variability of soil loss from Submediterranean rangelands are presented. Modified Gerlach troughs were used to measure both rill and interrill erosion. Random, systematic, stratified random, and cluster sampling methods were tested for various numbers of plots and plot widths in order to find the method that gives the most accurate estimate of soil loss. If both the rill and interrill subpopulations are sampled, random sampling and stratified random sampling give almost identical standard errors. Cluster sampling yields larger errors and is therefore less effective. Systematic sampling, however, allows one to choose more accurate samples of an economical size, but its efficacy depends largely on the number of rills in the study area. The smallest standard errors are obtained by measuring the total rill erosion and by sampling only the interrill subpopulation. When this procedure is applied, the four sampling methods turn out to be equally accurate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.