Thole's modified dipole interaction model for constructing molecular polarizabilities from effective, isotropic atomic polarizabilities is reviewed and extended. We report effective atomic polarizabilities for H, C, N, O, S, and the halogen atoms, independent of their chemical environment. They are obtained by fitting the model both to experimental and calculated molecular polarizabilities, the latter to enable one to model ab initio polarizabilities for various basis sets.
Phosphate moieties bind frequently at N-termini of helices in proteins. It is shown that this corresponds with an optimal interaction of the helix dipole and the charged phosphate. This favourable arrangement may have been discovered several times during evolution. In some enzymes, the helix dipole might be used in catalysis.
Recently, it has become possible to measure the mobility of charges along isolated chains of conjugated polymers. The mobility of holes along poly(phenylenevinylene) and polythiophene backbones were reported to be 0.43 and 0.02 cm 2 V -1 s -1, respectively. The large difference between the mobility of holes on poly-(phenylenevinylene) and polythiophene chains can be attributed to deviations from the coplanar alignment of structural units in the polymer backbone. The effect of such torsional disorder on intramolecular hole transport is studied theoretically in this paper using a model based on the tight-binding approximation. The calculated ratio of hole mobilities along poly(phenylenevinylene) and polythiophene chains was found to be in agreement with experimental findings. For both polymers, estimated mobilities become consistent with the experimental values if polymerization defects and chain end effects are included in the calculations. This suggests that even higher mobilities than those reported here can be realized by improving the effective conjugation along the polymer chain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.