Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapidly spread around the globe after its emergence in Wuhan in December 2019. With no specific therapeutic and prophylactic options available, the virus has infected millions of people of which more than half a million succumbed to the viral disease, COVID-19. The urgent need for an effective treatment together with a lack of small animal infection models has led to clinical trials using repurposed drugs without preclinical evidence of their in vivo efficacy. We established an infection model in Syrian hamsters to evaluate the efficacy of small molecules on both infection and transmission. Treatment of SARS-CoV-2−infected hamsters with a low dose of favipiravir or hydroxychloroquine with(out) azithromycin resulted in, respectively, a mild or no reduction in virus levels. However, high doses of favipiravir significantly reduced infectious virus titers in the lungs and markedly improved lung histopathology. Moreover, a high dose of favipiravir decreased virus transmission by direct contact, whereas hydroxychloroquine failed as prophylaxis. Pharmacokinetic modeling of hydroxychloroquine suggested that the total lung exposure to the drug did not cause the failure. Our data on hydroxychloroquine (together with previous reports in macaques and ferrets) thus provide no scientific basis for the use of this drug in COVID-19 patients. In contrast, the results with favipiravir demonstrate that an antiviral drug at nontoxic doses exhibits a marked protective effect against SARS-CoV-2 in a small animal model. Clinical studies are required to assess whether a similar antiviral effect is achievable in humans without toxic effects.
Boets, E. et al. (2017) Systemic availability and metabolism of colonicderived short-chain fatty acids in healthy subjects: a stable isotope study. Journal of Physiology, 595(2), pp. 541-555. (doi:10.1113/JP272613) This is the author's final accepted version.There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it.http://eprints.gla.ac.uk/128777/ Key Point Summary SCFAs are bacterial metabolites produced during colonic fermentation of undigested carbohydrates, such as dietary fibre and prebiotics, and could mediate the interaction between diet, the microbiota and the host. We quantified the fraction of colonic administered SCFA that could be recovered in the systemic circulation, the fraction that was excreted via breath and urine and the fraction that was used as a precursor for glucose, cholesterol and fatty acids. This information is essential to understand the molecular mechanisms by which SCFA beneficially affect physiological functions such as glucose and lipid metabolism and immune function. AbstractThe short-chain fatty acids (SCFAs), acetate, propionate and butyrate are bacterial metabolites that mediate the interaction between diet, the microbiota and the host. In this study, the systemic availability of SCFAs and their incorporation into biologically relevant molecules was quantified. Known amounts of 13 C-labelled acetate, propionate and butyrate were introduced in the colon of 12 healthy subjects using colon delivery capsules and plasma levels of 13 C-SCFAs and of 13 C-glucose, 13 C-cholesterol and 13 C-fatty acids were measured.The butyrate producing capacity of the intestinal microbiota was quantified as well. Systemic availability of colonic-administered acetate, propionate and butyrate was 36%, 9% and 2%, respectively. Conversion of acetate into butyrate (24%) was the most prevalent interconversion by the colonic microbiota and was not related to the butyrate-producing capacity in the faecal samples. Less than 1% of administered acetate was incorporated into cholesterol and <15% in fatty acids. On average, 6% of colonic propionate was incorporated into glucose. The SCFAs were mainly excreted via the lungs after oxidation to 13 CO 2 whereas less than 0.05% of the SCFAs were excreted into urine. These results will allow future evaluation and quantification of SCFAs production from 13 C-labelled fibres in the human colon by measuring 13 C-labelled SCFA concentrations in blood.
High intrapatient variability (IPV) of tacrolimus concentrations is increasingly recognized as a predictor of poor outcome in solid organ recipients. How it relates to evolution of histology has not been explored. We analyzed tacrolimus IPV using the coefficient of variability (CV) from months 6-12 after transplantation in a cohort of 220 renal recipients for whom paired protocol biopsies at 3 mo and 2 years were available. Recipients in the highest CV tertile had an increased risk of moderate to severe fibrosis and tubular atrophy by 2 years compared with the low-IPV tertile (odds ratio [OR] 2.47, 95% confidence interval [CI] 1.09-5.60, p = 0.031; and OR 2.40, 95% CI 1.03-5.60, p = 0.043, respectively). Other predictors were donor age, severity of chronic lesions at 3 mo, and presence of borderline or subclinical rejection at 3 mo. Chronicity score increased significantly more in the high CV tertile group than in the middle and low tertiles (mean increase 1.97 ± 2.03 vs. 1.18 ± 2.44 and 1.12 ± 1.80, respectively; p < 0.05). CV did not predict evolution of renal function, which did not deteriorate within the 2-year follow-up period. These results indicate that high IPV is related to accelerated progression of chronic histologic lesions before any evidence of renal dysfunction.
The calcineurin inhibitors (CNIs) tacrolimus and cyclosporine are widely used immunosuppressive drugs characterized by high pharmacokinetic and pharmacodynamic variability, both between and within patients. CNIs are highly lipophilic, poorly soluble, undergo extensive first-pass metabolism and are cleared by the liver. In both gut and liver, CNIs are substrates for the cytochrome P450 (CYP) enzymes 3A4 and 3A5 as well as the P-glycoprotein (P-gp) transporter, whose functions are determined by a complex interplay between genetic polymorphisms, the inductive or inhibitory effects of many drugs, herbs, food constituents and endogenous substances such as uremic toxins in case of end-stage renal disease. The current literature is reviewed for all common clinical determinants of variability in CNI disposition such as food intake, diarrhea and other intestinal pathology, anemia, hypoalbuminemia, hyperlipidemia, liver and kidney disease, aging, ethnicity, formulation and time post-transplant, focusing on the underlying mechanisms. Drugs and herb- and food constituents mainly interact with CNIs at the gut level by affecting bioavailability, with interactions generally being much more pronounced in case of oral compared with intravenous co-administration. Cyclosporine disposition is less susceptible to these interactions compared with tacrolimus, possibly because cyclosporine is itself a moderately strong CYP3A4- and strong P-gp inhibitor, blunting the effect of additional inhibitors. P-gp also has a major role in limiting distribution of CNI to tissues such as the brain, placenta, lymphocytes and kidney. Inactivating polymorphisms and inhibition of P-gp have the potential to significantly increase CNI exposure in these tissues with possible implications for toxicity and efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.