No abstract
Dynamics in poly(dimethylsi1oxane) (PDMS) melts from Tg + 75 to T, + 175 K have been measured by the fluorescence anisotropy decay of a probe chromophore. The reorientational dynamics of the probe chromophore, 5-(dimethylamino)-1-naphthalenesulfonamide (dansylamide), attached to a trifunctional silane, are characterized in a small molecule solvent, cyclohexanol, and compared to its reorientation in the polymer system. In cyclohexanol, the orientational dynamics obey the Debye-Stokes-Einstein equation with a thermal activation energy equal to that of the cyclohexanol viscosity. In contrast, the rate of reorientation of the probe dispersed in PDMS polymer melts does not reflect the bulk properties of the samples. The local dynamics are exponentially activated, with activation energies that are higher than that of the viscosity of the bulk material. This result is different than conclusions of analogous studies made on carbon-based polymers. Two possible explanations are given based on the unique characteristics of the silicon-oxygen bonds in PDMS.
Methods to chemically passivate the surfaces of amorphous-carbon films (a-C) produced by dc magnetron sputtering were studied. The chemical composition of carbon surfaces produced via sputtering are dependent upon the environment to which the carbon is exposed immediately following deposition. When the sputtered film is vented to ambient conditions, free radicals produced at the surface during the deposition process are quenched by reaction with oxygen and/or water to form an oxidized, hydrophilic surface. If the sputtered carbon film is, however, exposed to a reactive gas prior to venting to ambient, the chemical nature of the resulting surface can be modified substantially. Specifically, a less highly oxidized and much more hydrophobic carbon surface is produced when the surface free radicals are quenched via either an addition reaction (demonstrated with a fluorinated olefin) or a hydrogen abstraction reaction (demonstrated with two alkyl amines). Chemical modification of amorphous-carbon films can also be accomplished by performing the sputtering in a reactive plasma formed from mixtures of argon with molecular hydrogen, amines, and perfluorocarbons. The elemental composition of these films, and the relative reactivity of the surfaces formed, were investigated via x-ray photoelectron spectroscopy and contact-angle goniometry, respectively. In the case of sputtering with a mixture of argon and hydrogen, increasing the hydrogen flow results in an increase in the amount of hydrogen incorporated into the carbon film and a decrease in the surface free energy. Sputtering in diethylamine produces an amorphous-carbon film into which nitrogen is incorporated. The free energies of the a-C:N surfaces produced in this process are similar to those of the a-C:H films. Sputtering in a fluorocarbon vapor results in the incorporation of fluorine into the film structure and the formation of very low free-energy surfaces. Increasing the concentration of the fluorocarbon in the sputtering plasma increases the amount of F incorporated into the film. At the highest fluorocarbon flow rates employed, a-C films were produced with stoichiometries and surface free energies comparable to those of bulk Teflon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.