It is assumed that sarcoidosis is caused by inhalation of air borne agents in susceptible persons triggering the inflammatory reaction. The association of metallic dust exposure, such as beryllium and aluminium, and sarcoidlike pulmonary disorders is well known. The ability of man-made mineral fibres (MMMF) to cause granulomatous lung disease has not been appreciated until now. Recently, we observed the association of sarcoidlike granulomatous reaction and occupational history of glass fibre exposure. We hypothesized that there might be a relationship between MMMF exposure and the development of sarcoidlike granulomas. Therefore, the records of 50 sarcoidosis patients-who visited our outpatient clinic between 1996 and 1999 were reviewed. This revealed that 14 cases recalled a history of exposure to either glass fibres or rock wool, both MMMF fibres. The available obtained tissue specimens (n = 12) were reviewed. In six cases electron microscopy qualitative analysis of small fragments of the tissue revealed among others silica, aluminium and sometimes titanium. A distinct relation between fibre deposits fibre deposits and granulomas was found. These findings indicate that in susceptible people MMMF exposure might be related to a chronic granulomatous disease similar to chronic beryllium disease.
Background Mycobacterium ulcerans is the causative agent of Buruli ulcer (BU), a necrotizing disease of the skin, soft tissue and bone. PCR is increasingly used in the diagnosis of BU and in research on the mode of transmission and environmental reservoir of M. ulcerans.Methodology/Principal FindingsThe aim of this study was to evaluate the performance of laboratories in detecting M. ulcerans using molecular tests in clinical and environmental samples by implementing sequential multicenter external quality assessment (EQA) programs. The second round of the clinical EQA program revealed somewhat improved performance.Conclusions/SignificanceOngoing EQA programs remain essential and continued participation in future EQA programs by laboratories involved in the molecular testing of clinical and environmental samples for M. ulcerans for diagnostic and research purposes is strongly encouraged. Broad participation in such EQA programs also benefits the harmonization of quality in the BU research community and enhances the credibility of advances made in solving the transmission enigma of M. ulcerans.
mBuruli ulcer is an indolent, slowly progressing necrotizing disease of the skin caused by infection with Mycobacterium ulcerans. In the present study, we applied a redesigned technique to a vast panel of M. ulcerans disease isolates and clinical samples originating from multiple African disease foci in order to (i) gain fundamental insights into the population structure and evolutionary history of the pathogen and (ii) disentangle the phylogeographic relationships within the genetically conserved cluster of African M. ulcerans. Our analyses identified 23 different African insertion sequence element single nucleotide polymorphism (ISE-SNP) types that dominate in different areas where Buruli ulcer is endemic. These ISE-SNP types appear to be the initial stages of clonal diversification from a common, possibly ancestral ISE-SNP type. ISE-SNP types were found unevenly distributed over the greater West African hydrological drainage basins. Our findings suggest that geographical barriers bordering the basins to some extent prevented bacterial gene flow between basins and that this resulted in independent focal transmission clusters associated with the hydrological drainage areas. Different phylogenetic methods yielded two well-supported sister clades within the African ISE-SNP types. The ISE-SNP types from the "pan-African clade" were found to be widespread throughout Africa, while the ISE-SNP types of the "Gabonese/Cameroonian clade" were much rarer and found in a more restricted area, which suggested that the latter clade evolved more recently. Additionally, the Gabonese/Cameroonian clade was found to form a strongly supported monophyletic group with Papua New Guinean ISE-SNP type 8, which is unrelated to other Southeast Asian ISE-SNP types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.