Summary
Arabidopsis SENSITIVE TO FREEZING6 (SFR6) controls cold‐ and drought‐inducible gene expression and freezing‐ and osmotic‐stress tolerance. Its identification as a component of the MEDIATOR transcriptional co‐activator complex led us to address its involvement in other transcriptional responses.
Gene expression responses to Pseudomonas syringae, ultraviolet‐C (UV‐C) irradiation, salicylic acid (SA) and jasmonic acid (JA) were investigated in three sfr6 mutant alleles by quantitative real‐time PCR and susceptibility to UV‐C irradiation and Pseudomonas infection were assessed.
sfr6 mutants were more susceptible to both Pseudomonas syringae infection and UV‐C irradiation. They exhibited correspondingly weaker PR (pathogenesis‐related) gene expression than wild‐type Arabidopsis following these treatments or after direct application of SA, involved in response to both UV‐C and Pseudomonas infection. Other genes, however, were induced normally in the mutants by these treatments. sfr6 mutants were severely defective in expression of plant defensin genes in response to JA; ectopic expression of defensin genes was provoked in wild‐type but not sfr6 by overexpression of ERF5.
SFR6/MED16 controls both SA‐ and JA‐mediated defence gene expression and is necessary for tolerance of Pseudomonas syringae infection and UV‐C irradiation. It is not, however, a universal regulator of stress gene transcription and is likely to mediate transcriptional activation of specific regulons only.
Adding biochar, the solid coproduct of biofuel production, to peat can enhance strawberry growth, and disease resistance against the airborne fungal pathogen Botrytis cinerea. Additionally, biochar can induce shifts in the strawberry rhizosphere microbiome. However, the moment that this biochar-mediated shift occurs in the rhizosphere is not known. Further, the effect of an above-ground infection on the strawberry rhizosphere microbiome is unknown. In the present study we established two experiments in which strawberry transplants (cv. Elsanta) were planted either in peat or in peat amended with 3% biochar. First, we established a time course experiment to measure the effect of biochar on the rhizosphere bacterial and fungal communities over time. In a second experiment, we inoculated the strawberry leaves with B. cinerea, and studied the impact of the infection on the rhizosphere bacterial community. The fungal rhizosphere community was stabilized after 1 week, except for the upcoming Auriculariales, whereas the bacterial community shifted till 6 weeks. An effect of the addition of biochar to the peat on the rhizosphere microbiome was solely measured for the bacterial community from week 6 of plant growth onwards. When scoring the plant development, biochar addition was associated with enhanced root formation, fruit production, and postharvest resistance of the fruits against B. cinerea. We hypothesize that the bacterial rhizosphere microbiome, but also biochar-mediated changes in chemical substrate composition could be involved in these events. Infection of the strawberry leaves with B. cinerea induced shifts in the bacterial rhizosphere community, with an increased bacterial richness. This disease-induced effect was not observed in the rhizospheres of the B. cinerea-infected plants grown in the biochar-amended peat. The results show that an above-ground infection has its effect on the strawberry rhizosphere microbiome, changing the bacterial interactions in the root-substrate interface. This infection effect on the bacterial rhizosphere microbiome seems to be comparable to, but less pronounced than the effect of biochar-addition to the peat. The biological meaning of these observations needs further research, but this study indicates that biochar and an above-ground pathogen attack help the plant to recruit rhizosphere microbes that may aid them in their plant growth and health.
Peat based growing media are not ecologically sustainable and often fail to support biological control. Miscanthus straw was (1) tested to partially replace peat; and (2) pre-colonized with a Trichoderma strain to increase the biological control capacity of the growing media. In two strawberry pot trials (denoted as experiment I & II), extruded and non-extruded miscanthus straw, with or without pre-colonization with T. harzianum T22, was used to partially (20% v/v) replace peat. We tested the performance of each mixture by monitoring strawberry plant development, nutrient content in the leaves and growing media, sensitivity of the fruit to the fungal pathogen Botrytis cinerea, rhizosphere community and strawberry defense responses. N immobilization by miscanthus straw reduced strawberry growth and yield in experiment II but not in I. The pre-colonization of the straw with Trichoderma increased the post-harvest disease suppressiveness against B. cinerea and changed the rhizosphere fungal microbiome in both experiments. In addition, defense-related genes were induced in experiment II. The use of miscanthus straw in growing media will reduce the demand for peat and close resource loops. Successful pre-colonization of this straw with biological control fungi will optimize crop cultivation, requiring fewer pesticide applications, which will benefit the environment and human health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.