Dapagliflozin as adjunct therapy to adjustable insulin in patients with type 1 diabetes was well tolerated and improved glycemic control with no increase in hypoglycemia versus placebo but with more DKA events.
Islet grafts can induce insulin independence in type 1 diabetic patients, but their function is variable with only 10% insulin indepence after 5 years. We investigated whether cultured grafts with defined  cell number help standardize metabolic outcome.
Aims/hypothesis Alginate-encapsulated human islet cell grafts have not been able to correct diabetes in humans, whereas free grafts have. This study examined in immunodeficient mice whether alginate-encapsulated graft function was inferior to that of free grafts of the same size and composition. Methods Cultured human islet cells were equally distributed over free and alginate-encapsulated grafts before implantation in, respectively, the kidney capsule and the peritoneal cavity of non-obese diabetic mice with severe combined immunodeficiency and alloxan-induced diabetes. Implants were followed for in vivo function and retrieved for analysis of cellular composition (all) and insulin secretory responsiveness (capsules). Results Free implants with low beta cell purity (19±1%) were non-functional and underwent 90% beta cell loss. At medium purity (50±1%), they were functional at post-transplant week 1, evolving to normoglycaemia (4/8) or to C-peptide negativity (4/8) depending on the degree of beta cell-specific losses. Encapsulated implants immediately and sustainably corrected diabetes, irrespective of beta cell purity (16/16). Most capsules were retrievable as single units, enriched in endocrine cells that exhibited rapid secretory responses to glucose and glucagon. Single capsules with similar properties were also retrieved from a type 1 diabetic recipient at post-transplant month 3. However, the vast majority were clustered and contained debris, explaining the poor rise in plasma C-peptide. Conclusions/interpretation In immunodeficient mice, i.p. implanted alginate-encapsulated human islet cells exhibited a better outcome than free implants under the kidney capsule. They did not show primary non-function at low beta cell purity and avoided beta cell-specific losses by rapidly establishing normoglycaemia. Retrieved capsules presented secretory responses to glucose, which was also observed in a type 1 diabetic recipient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.