Zinc co-crystallizes with insulin in dense core secretory granules, but its role in insulin biosynthesis, storage and secretion is unknown. In this study we assessed the role of the zinc transporter ZnT8 using ZnT8-knockout (ZnT8 ؊/؊ ) mice. Absence of ZnT8 expression caused loss of zinc release upon stimulation of exocytosis, but normal rates of insulin biosynthesis, normal insulin content and preserved glucose-induced insulin release. Ultrastructurally, mature dense core insulin granules were rare in ZnT8 ؊/؊ beta cells and were replaced by immature, pale insulin ''progranules,'' which were larger than in ZnT8 ؉/؉ islets. When mice were fed a control diet, glucose tolerance and insulin sensitivity were normal. However, after high-fat diet feeding, the ZnT8 ؊/؊ mice became glucose intolerant or diabetic, and islets became less responsive to glucose. Our data show that the ZnT8 transporter is essential for the formation of insulin crystals in beta cells, contributing to the packaging efficiency of stored insulin. Interaction between the ZnT8 ؊/؊ genotype and diet to induce diabetes is a model for further studies of the mechanism of disease of human ZNT8 gene mutations.dense core granule ͉ diabetes ͉ zinc
A method is developed for the preparation of single, pure, and viable rat pancreatic A and B cells in numbers sufficient for in vitro analysis. Islet isolation and dissociation techniques have been modified to increase the yield in islet cells per pancreas and per experiment. Islet cells are separated on the basis of their light scatter activity and flavin adenine dinucleotide autofluorescence into single non-B cells, single B cells, and structurally coupled B cells. Islet non-B cells are further purified into single A cells by autofluorescence-activated sorting according to the cellular nicotinamide adenine dinucleotide phosphate content at 20 mM glucose. Apart from offering the advantage of separating cells according to their functional characteristics, this procedure succeeds in the simultaneous isolation of 95-100% pure A and B cells. More than 50% of the cells in the initial islet preparation are recovered as single purified cells which can be maintained in culture. The isolated pancreatic A and B cells have been defined in terms of their cell volume, DNA and hormone content, and ultrastructural characteristics. The availability of pure pancreatic A and B cells is expected to contribute to our understanding of the regulation of glucagon and insulin release.
Glucose is a well-known stimulus of proinsulin biosynthesis. In purified beta cells, the sugar induces a 25-fold increase in the synthesis of insulin immunoreactive material over 60-min incubation. Autoradiographic analysis of the individual cells shows that this effect is achieved via dose-dependent recruitment of pancreatic beta cells to biosynthetic activity. Recruitment of beta cells is also seen in isolated islets exposed to glucose. The sigmoidal dose-response curve for glucose-induced proinsulin biosynthesis thus reflects a heterogeneous responsiveness of pancreatic beta cells rather than a progressively increasing activity of functionally homogeneous cells. Dose-dependent recruitment of functionally diverse cells may be a ubiquitous mechanism in tissue function. The biosynthesis of proinsulin has been extensively studied in rat islet tissue (1-12). The process appears critically dependent on D-glucose (1,(3)(4)(5), which can regulate various steps in insulin gene expression by pancreatic beta cells (3,(7)(8)(9)(10)(11)(12). Acute stimulation by the sugar has been located at the translational level (7, 8), whereas its chronic effects involve an action on the production (9-11) and/or stability (12) of preproinsulin mRNA. How individual pancreatic beta cells contribute to the overall biosynthetic process and its regulation is presently unknown. The heterogeneous and speciesspecific topography of beta cells has led to speculation on a functional diversity in this cell population (13,14). In vitro studies on nonpurified (15, 16) and purified (17, 18) beta cell preparations support the coexistence of functionally heterogeneous beta cell subpopulations that can vary markedly in their response to glucose. The present study assesses this concept by comparing the glucose effects on protein synthesis in individual beta cells. ,ug/ml (Boehringer Mannheim) and DNase at 2 ,g/ml (Boehringer Mannheim) (21). Purified single islet beta cells were obtained by autofluorescence-activated cell sorting as has been described in detail in previous work from our laboratory (20,22). The purity and viability of the isolated beta cell preparations exceeded 95% (20).Labeling Data are expressed as cpm per beta cell after correction for background radioactivity and represent mean values ± SEM (n = 4).(Inset) Effect of glucose (abscissa) on the ratio of proinsulin biosynthesis over total protein synthesis.
No abstract
SUMMARY The human growth hormone (hGH) minigene is frequently used in the derivation of transgenic mouse lines to enhance transgene expression. Although this minigene is present in the transgenes as a second-cistron, and thus not thought to be expressed, we found that three commonly used lines, Pdx1-CreLate, RIP-Cre, and MIP-GFP, each expressed significant amounts of hGH in pancreatic islets. Locally secreted hGH binds to prolactin receptors on β cells, activates STAT5 signaling, and induces pregnancy-like changes in gene expression, thereby augmenting pancreatic β cell mass and insulin content. In addition, islets of Pdx1-CreLate mice have lower GLUT2 expression and reduced glucose-induced insulin release and are protected against the β cell toxin streptozotocin. These findings may be important when interpreting results obtained when these and other hGH minigene-containing transgenic mice are used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.