Deep learning has led to a paradigm shift in artificial intelligence, including web, text, and image search, speech recognition, as well as bioinformatics, with growing impact in chemical physics. Machine learning, in general, and deep learning, in particular, are ideally suitable for representing quantum-mechanical interactions, enabling us to model nonlinear potential-energy surfaces or enhancing the exploration of chemical compound space. Here we present the deep learning architecture SchNet that is specifically designed to model atomistic systems by making use of continuous-filter convolutional layers. We demonstrate the capabilities of SchNet by accurately predicting a range of properties across chemical space for molecules and materials, where our model learns chemically plausible embeddings of atom types across the periodic table. Finally, we employ SchNet to predict potential-energy surfaces and energy-conserving force fields for molecular dynamics simulations of small molecules and perform an exemplary study on the quantum-mechanical properties of C-fullerene that would have been infeasible with regular ab initio molecular dynamics.
Saliency methods aim to explain the predictions of deep neural networks. These methods lack reliability when the explanation is sensitive to factors that do not contribute to the model prediction. We use a simple and common pre-processing step -adding a constant shift to the input data-to show that a transformation with no effect on the model can cause numerous methods to incorrectly attribute. In order to guarantee reliability, we posit that methods should fulfill input invariance, the requirement that a saliency method mirror the sensitivity of the model with respect to transformations of the input. We show, through several examples, that saliency methods that do not satisfy input invariance result in misleading attribution.
This paper describes a novel method called Deep Dynamic Neural Networks (DDNN) for multimodal gesture recognition. A semi-supervised hierarchical dynamic framework based on a Hidden Markov Model (HMM) is proposed for simultaneous gesture segmentation and recognition where skeleton joint information, depth and RGB images, are the multimodal input observations. Unlike most traditional approaches that rely on the construction of complex handcrafted features, our approach learns high-level spatio-temporal representations using deep neural networks suited to the input modality: a Gaussian-Bernouilli Deep Belief Network (DBN) to handle skeletal dynamics, and a 3D Convolutional Neural Network (3DCNN) to manage and fuse batches of depth and RGB images. This is achieved through the modeling and learning of the emission probabilities of the HMM required to infer the gesture sequence. This purely data driven approach achieves a Jaccard index score of 0.81 in the ChaLearn LAP gesture spotting challenge. The performance is on par with a variety of state-of-the-art hand-tuned feature-based approaches and other learning-based methods, therefore opening the door to the use of deep learning techniques in order to further explore multimodal time series data.
Abstract. There is an undeniable communication problem between the Deaf community and the hearing majority. Innovations in automatic sign language recognition try to tear down this communication barrier. Our contribution considers a recognition system using the Microsoft Kinect, convolutional neural networks (CNNs) and GPU acceleration. Instead of constructing complex handcrafted features, CNNs are able to automate the process of feature construction. We are able to recognize 20 Italian gestures with high accuracy. The predictive model is able to generalize on users and surroundings not occurring during training with a cross-validation accuracy of 91.7%. Our model achieves a mean Jaccard Index of 0.789 in the ChaLearn 2014 Looking at People gesture spotting competition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.