Many microorganisms propel themselves through their fluid environment by means of multiple rotating flagella that self-organize to form bundles, a process that is complex and poorly understood. In the present work, the bundling behavior of a pair of flexible flagella, each driven by a constant torque motor, is investigated, using a mathematical model incorporating the fluid motion generated by each flagellum as well as the finite flexibility of the flagella. The initial stage of bundling is driven purely by hydrodynamics but the final state of the bundle is determined by a nontrivial balance between hydrodynamics and elasticity. As the flexibility of the flagella increases a regime is found where, depending on initial conditions, one finds bundles that are either tight, with the flagella in mechanical contact, or loose, with the flagella intertwined but not touching. That is, multiple coexisting states of bundling are found. The parameter regime (in terms of flexibility and distance between motors) at which this multiplicity occurs is comparable to the parameters for a number of bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.