The objective of the present work is to investigate wave run-up around a monopile subjected to regular waves inside a numerical wave flume using the Computational Fluid Dynamics (CFD) toolbox OpenFOAM®. Reynolds-Averaged Navier-Stokes (RANS) turbulence modelling is performed by applying the k-ω SST model. Boundary conditions for wave generation and absorption are adopted from the IHFOAM toolbox. Simulations of propagating water waves show sometimes excessive wave damping (i.e. a significant decrease in wave height over the length of the numerical wave flume) based on RANS turbulence modelling. This anomaly is prevented by implementing a buoyancy term in the turbulent kinetic energy equation. The additional term suppresses the turbulence level at the interface between water and air. The proposed buoyancy-modified k-ω SST turbulence model results in an overall stable wave propagation model without significant wave damping over the length of the flume. Firstly, the necessity of a buoyancy-modified k-ω SST turbulence model is demonstrated for the case of propagating water waves in an empty wave flume. Secondly, numerical results of wave run-up around a monopile under regular waves using the buoyancy-modified k-ω SST turbulence model are validated by using experimental data measured in a wave flume by De Vos et al. (2007). Furthermore, timedependent high spatial resolutions of the numerically obtained wave run-up around the monopile are presented. These results are in line with the experimental data and available analytical formulations.
In this work, the performance of a buoyancy-modified turbulence model is shown for simulating wave breaking in a numerical wave flume. Reynolds-Averaged Navier-Stokes (RANS) modelling is performed by applying both a k-ω and a k-ω SST turbulence model using the Computational Fluid Dynamics (CFD) toolbox OpenFOAM. In previous work of the authors (Devolder et al., 2017), the observed significant decrease in wave height over the length of the numerical wave flume based on RANS turbulence modelling for the case of propagating waves has been avoided by developing a buoyancy-modified k-ω SST model in which (i) the density is explicitly included in the turbulence transport equations and (ii) a buoyancy term is added to the turbulent kinetic energy (TKE) equation. In this paper, two buoyancy-modified turbulence models are applied for the case of wave breaking simulations: k-ω and k-ω SST. Numerical results of wave breaking under regular waves are validated with experimental data measured in a wave flume by Ting and Kirby (1994). The numerical results show a good agreement with the experimental measurements for the surface elevations, undertow profiles of the horizontal velocity and turbulent kinetic energy profiles. Moreover, the underlying motivations for the concept of a buoyancy-modified turbulence model are demonstrated by the numerical results and confirmed by the experimental observations. Firstly, the buoyancy term forces the solution of the flow field near the free water surface to a laminar solution in case of wave propagation. Secondly in the surf zone where waves break, the buoyancy term goes to zero and a fully turbulent solution of the flow field is calculated. Finally and most importantly, the buoyancy-modified turbulence models significantly reduce the common overestimation of TKE in the flow field.
In preparation for the use of Computational Fluid Dynamics (CFD) simulation results as 'numerical experiments' in fire research, the agreement with experimental data for two different small-scale set-ups is discussed. The first configuration concerns the position While much additional work is required, both in CFD as in 'real' experiments, the 2 results are encouraging for the potential of state-of-the-art CFD to be used as numerical experiments.
In this paper we use the Computational Fluid Dynamics (CFD) toolbox OpenFOAM to perform numerical simulations of multiple floating point absorber wave energy converters (WECs) arranged in a geometrical array configuration inside a numerical wave tank (NWT). The two-phase Navier-Stokes fluid solver is coupled with a motion solver to simulate the hydrodynamic flow field around the WECs and the wave-induced rigid body heave motion of each WEC within the array. In this study, the numerical simulations of a single WEC unit are extended to multiple WECs and the complexity of modelling individual floating objects close to each other in an array layout is tackled. The NWT is validated for fluid-structure interaction (FSI) simulations by using experimental measurements for an array of two, five and up to nine heaving WECs subjected to regular waves. The validation is achieved by using mathematical models to include frictional forces observed during the experimental tests. For all the simulations presented, a good agreement is found between the numerical and the experimental results for the WECs' heave motions, the surge forces on the WECs and the perturbed wave field around the WECs. As a result, our coupled CFD-motion solver proves to be a suitable and accurate toolbox for the study of fluid-structure interaction problems of WEC arrays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.