Physical-layer ngerprinting investigates how features extracted from radio signals can be used to uniquely identify devices. is paper proposes and analyses a novel methodology to ngerprint LoRa devices, which is inspired by recent advances in supervised machine learning and zero-shot image classi cation. Contrary to previous works, our methodology does not rely on localized and low-dimensional features, such as those extracted from the signal transient or preamble, but uses the entire signal. We have performed our experiments using 22 LoRa devices with 3 di erent chipsets. Our results show that identical chipsets can be distinguished with 59% to 99% accuracy per symbol, whereas chipsets from di erent vendors can be ngerprinted with 99% to 100% accuracy per symbol. e ngerprinting can be performed using only inexpensive commercial o-the-shelf so ware de ned radios, and a low sample rate of 1 Msps. Finally, we release all datasets and code pertaining to these experiments to the public domain.
We present two novel noncooperative MAC layer fingerprinting and tracking techniques for Wi-Fi (802.11) enabled mobile devices. Our first technique demonstrates how a per-bit entropy analysis of a single captured frame allows an adversary to construct a fingerprint of the transmitter that is 80.0 to 67.6 percent unique for 50 to 100 observed devices and 33.0 to 15.1 percent unique for 1,000 to 10,000 observed devices. We show how existing mitigation strategies such as MAC address randomization can be circumvented using only this fingerprint and temporal information. Our second technique leverages peer-to-peer 802.11u Generic Advertisement Service (GAS) requests and 802.11e Block Acknowledgement (BA) requests to instigate transmissions on demand from devices that support these protocols. We validate these techniques using two datasets, one of which was recorded at a music festival containing 28,048 unique devices and the other at our research lab containing 138 unique devices. Finally, we discuss a number of countermeasures that can be put in place by mobile device vendors in order to prevent noncooperative tracking through the discussed techniques.
Sensitive cryptographic information, e.g. AES secret keys, can be extracted from the electromagnetic (EM) leakages unintentionally emitted by a device using techniques such as Correlation Electromagnetic Analysis (CEMA). In this paper, we introduce Correlation Optimization (CO), a novel approach that improves CEMA attacks by formulating the selection of useful EM leakage samples in a trace as a machine learning optimization problem. To this end, we propose the correlation loss function, which aims to maximize the Pearson correlation between a set of EM traces and the true AES key during training. We show that CO works with high-dimensional and noisy traces, regardless of time-domain trace alignment and without requiring prior knowledge of the power consumption characteristics of the cryptographic hardware. We evaluate our approach using the ASCAD benchmark dataset and a custom dataset of EM leakages from an Arduino Duemilanove, captured with a USRP B200 SDR. Our results indicate that the masked AES implementation used in all three ASCAD datasets can be broken with a shallow Multilayer Perceptron model, whilst requiring only 1,000 test traces on average. A similar methodology was employed to break the unprotected AES implementation from our custom dataset, using 22,000 unaligned and unfiltered test traces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.