We consider ordinal classification and instance ranking problems where each attribute is known to have an increasing or decreasing relation with the class label or rank. For example, it stands to reason that the number of query terms occurring in a document has a positive influence on its relevance to the query. We aim to exploit such monotonicity constraints by using labeled attribute vectors to draw conclusions about the class labels of order related unlabeled ones. Assuming we have a pool of unlabeled attribute vectors, and an oracle that can be queried for class labels, the central problem is to choose a query point whose label is expected to provide the most information. We evaluate different query strategies by comparing the number of inferred labels after some limited number of queries, as well as by comparing the prediction errors of models trained on the points whose labels have been determined so far. We present an efficient algorithm to determine the query point preferred by the well-known active learning strategy generalized binary search. This algorithm can be applied to binary classification on incomplete matrix orders. For non-binary classification, we propose to include attribute vectors in the training set whose class labels have not been uniquely determined yet. We perform experiments on artificial and real data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.