For three billion years, before the Cambrian diversification of life, laminated carbonate build-ups called stromatolites were widespread in shallow marine seas. These ancient structures are generally thought to be microbial in origin and potentially preserve evidence of the Earth's earliest biosphere. Despite their evolutionary significance, little is known about stromatolite formation, especially the relative roles of microbial and environmental factors in stromatolite accretion. Here we show that growth of modern marine stromatolites represents a dynamic balance between sedimentation and intermittent lithification of cyanobacterial mats. Periods of rapid sediment accretion, during which stromatolite surfaces are dominated by pioneer communities of gliding filamentous cyanobacteria, alternate with hiatal intervals. These discontinuities in sedimentation are characterized by development of surface films of exopolymer and subsequent heterotrophic bacterial decomposition, forming thin crusts of microcrystalline carbonate. During prolonged hiatal periods, climax communities develop, which include endolithic coccoid cyanobacteria. These coccoids modify the sediment, forming thicker lithified laminae. Preservation of lithified layers at depth creates millimetre-scale lamination. This simple model of modern marine stromatolite growth may be applicable to ancient stromatolites.
Microbialites (benthic microbial carbonate deposits) were discovered in a hypersaline alkaline lake on Eleuthera Island (Bahamas). From the edge towards the centre of the lake, four main zones of precipitation could be distinguished: (1) millimetre‐sized clumps of Mg‐calcite on a thin microbial mat; (2) thicker and continuous carbonate crusts with columnar morphologies; (3) isolated patches of carbonate crust separated by a dark non‐calcified gelatinous mat; and (4) a dark microbial mat without precipitation. In thin section, the precipitate displayed a micropeloidal structure characterized by micritic micropeloids (strong autofluorescence) surrounded by microspar and spar cement (no fluorescence). Observations using scanning electron microscopy (SEM) equipped with a cryotransfer system indicate that micrite nucleation is initiated within a polymer biofilm that embeds microbial communities. These extracellular polymeric substances (EPS) are progressively replaced with high‐Mg calcite. Discontinuous EPS calcification generates a micropeloidal structure of the micrite, possibly resulting from the presence of clusters of coccoid or remnants of filamentous bacteria. At high magnification, the microstructure of the initial precipitate consists of 200–500 nm spheres. No precipitation is observed in or on the sheaths of cyanobacteria, and only a negligible amount of precipitation is directly associated with the well‐organized and active filamentous cyanobacteria (in deeper layers of the mat), indicating that carbonate precipitation is not associated with CO2 uptake during photosynthesis. Instead, the precipitation occurs at the uppermost layer of the mat, which is composed of EPS, empty filamentous bacteria and coccoids (Gloeocapsa spp.). Two‐dimensional mapping of sulphate reduction shows high activity in close association with the carbonate precipitate at the top of the microbial mat. In combination, these findings suggest that net precipitation of calcium carbonate results from a temporal and spatial decoupling of the various microbial metabolic processes responsible for CaCO3 precipitation and dissolution. Theoretically, partial degradation of EPS by aerobic heterotrophs or UV fuels sulphate‐reducing activity, which increases alkalinity in microdomains, inducing CaCO3 precipitation. This degradation could also be responsible for EPS decarboxylation, which eliminates Ca2+‐binding capacity of the EPS and releases Ca2+ ions that were originally bound by carboxyl groups. At the end of these processes, the EPS biofilm is calcified and exhibits a micritic micropeloidal structure. The EPS‐free precipitate subsequently serves as a substrate for physico‐chemical precipitation of spar cement from the alkaline water of the lake. The micropeloidal structure has an intimate mixture of micrite and microspar comparable to microstructures of some fossil microbialites.
Sulfate‐reducing bacteria (SRB) have been recognized as key players in the precipitation of calcium carbonate in lithifying microbial communities. These bacteria increase the alkalinity by reducing sulfate ions, and consuming organic acids. SRB also produce copious amounts of exopolymeric substances (EPS). All of these processes influence the morphology and mineralogy of the carbonate minerals. Interactions of EPS with metals, calcium in particular, are believed to be the main processes through which the extracellular matrix controls the precipitation of the carbonate minerals. SRB exopolymers were purified from lithifying mat and type cultures, and their potential role in CaCO3 precipitation was determined from acid‐base titrations and calcium‐binding experiments. Major EPS characteristics were established using infrared spectroscopy and gas chromatography to characterize the chemical functional groups and the sugar monomers composition. Our results demonstrate that all of the three SRB strains tested were able to produce large amounts of EPS. This EPS exhibited three main buffering capacities, which correspond to carboxylic acids (pKa = 3.0), sulfur‐containing groups (thiols, sulfonic and sulfinic acids – pKa = 7.0–7.1) and amino groups (pKa = 8.4–9.2). The calcium‐binding capacity of these exopolymers in solution at pH 9.0 ranged from 0.12gCa gEPS−1–0.15 gCa gEPS−1. These results suggest that SRB could play a critical role in the formation of CaCO3 in lithifying microbial mats. The unusually high sulfur content, which has not been reported for EPS before, indicates a possible strong interaction with iron. In addition to changing the saturation index through metabolic activity, our results imply that SRB affect the rock record through EPS production and its effect on the CaCO3 precipitation. Furthermore, EPS produced by SRB may account for the incorporation of metals (e.g. Sr, Fe, Mg) associated with carbonate minerals in the rock record.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.