SUMMARYPurpose: Diffusion tensor imaging (DTI) is used increasingly to study white matter integrity in people with temporal lobe epilepsy (TLE). Most studies report fractional anisotropy (FA) decrease and mean diffusivity (MD) increase in multiple white matter regions. The disturbance of white matter integrity varies across studies and between regions. We aimed to obtain a more consistent estimate of white matter diffusion characteristics and relate these to the distance from the seizure focus. Methods: Studies comparing diffusion characteristics of people with epilepsy with those of healthy controls were systematically reviewed and quantified using random and mixed effects meta analysis. In addition to the overall metaanalysis, pooled FA and MD differences were determined per hemisphere and white matter category separately. Key Findings: We included 13 cross-sectional studies. The pooled FA difference for all white matter was )0.026 (95% confidence interval [CI] )0.033 to )0.019) and MD difference was 0.028 · 10 )3 mm 2 /s (95% CI 0.015-0.04). FA was reduced significantly in people with TLE compared with healthy controls in both ipsilateral (mean difference )0.03) and contralateral white matter ()0.02). MD was significantly increased ipsilaterally and contralaterally. MD differed significantly between white matter connected to the affected temporal lobe and remote white matter. Significance: The meta-analysis provides a better estimation of the true diffusion characteristics. White matter structural integrity in TLE is disturbed more severely in the ipsilateral than in the contralateral hemisphere, and tracts closely connected with the affected temporal lobe are most disturbed. The exact underlying mechanisms remain to be elucidated.
The quantification of excitatory and inhibitory neurotransmission and the associated energy metabolism is crucial for a proper understanding of brain function. Although the detection of glutamatergic neurotransmission in vivo by 13 C NMR spectroscopy is now relatively routine, the detection of GABAergic neurotransmission in vivo has remained elusive because of the low GABA concentration and spectral overlap. Using 1 H-[ 13 C] NMR spectroscopy at high magnetic field in combination with robust spectral modeling and the use of different substrates, [U-13 C 6 ]-glucose and [2-13 C]-acetate, it is shown that GABAergic, as well as glutamatergic neurotransmitter fluxes can be detected non-invasively in rat brain in vivo.
SUMMARYObjective: In 2014 the European Union-funded E-PILEPSY project was launched to improve awareness of, and accessibility to, epilepsy surgery across Europe. We aimed to investigate the current use of neuroimaging, electromagnetic source localization, and imaging postprocessing procedures in participating centers. Methods: A survey on the clinical use of imaging, electromagnetic source localization, and postprocessing methods in epilepsy surgery candidates was distributed among the 25 centers of the consortium. A descriptive analysis was performed, and results were compared to existing guidelines and recommendations. Results: Response rate was 96%. Standard epilepsy magnetic resonance imaging (MRI) protocols are acquired at 3 Tesla by 15 centers and at 1.5 Tesla by 9 centers. Three centers perform 3T MRI only if indicated. Twenty-six different MRI sequences were reported. Six centers follow all guideline-recommended MRI sequences with the proposed slice orientation and slice thickness or voxel size. Additional sequences are used by 22 centers. MRI postprocessing methods are used in 16 centers. Interictal positron emission tomography (PET) is available in 22 centers; all using 18F-fluorodeoxyglucose (FDG). Seventeen centers perform PET postprocessing. Single-photon emission computed tomography (SPECT) is used by 19 centers, of which 15 perform postprocessing. Four centers perform neither PET nor SPECT in children. Seven centers apply magnetoencephalography (MEG) source localization, and nine apply electroencephalography (EEG) source localization. Fourteen combinations of inverse methods and volume conduction models are used. Significance: We report a large variation in the presurgical diagnostic workup among epilepsy surgery centers across Europe. This diversity underscores the need for highquality systematic reviews, evidence-based recommendations, and harmonization of available diagnostic presurgical methods.
SummaryObjectiveThe aim of this study is to determine whether the use of 7 tesla (T) MRI in clinical practice leads to higher detection rates of focal cortical dysplasias in possible candidates for epilepsy surgery.MethodsIn our center patients are referred for 7 T MRI if lesional focal epilepsy is suspected, but no abnormalities are detected at one or more previous, sufficient‐quality lower‐field MRI scans, acquired with a dedicated epilepsy protocol, or when concealed pathology is suspected in combination with MR‐visible mesiotemporal sclerosis—dual pathology. We assessed 40 epilepsy patients who underwent 7 T MRI for presurgical evaluation and whose scans (both 7 T and lower field) were discussed during multidisciplinary epilepsy surgery meetings that included a dedicated epilepsy neuroradiologist. We compared the conclusions of the multidisciplinary visual assessments of 7 T and lower‐field MRI scans.ResultsIn our series of 40 patients, multidisciplinary evaluation of 7 T MRI identified additional lesions not seen on lower‐field MRI in 9 patients (23%). These findings were guiding in surgical planning. So far, 6 patients underwent surgery, with histological confirmation of focal cortical dysplasia or mild malformation of cortical development.SignificanceSeven T MRI improves detection of subtle focal cortical dysplasia and mild malformations of cortical development in patients with intractable epilepsy and may therefore contribute to identification of surgical candidates and complete resection of the epileptogenic lesion, and thus to postoperative seizure freedom.
Objective: The aim was to compare the outcomes of subdural electrode (SDE) implantations versus stereotactic electroencephalography (SEEG), the 2 predominant methods of intracranial electroencephalography (iEEG) performed in difficult-to-localize drug-resistant focal epilepsy. Methods: The Surgical Therapies Commission of the International League Against Epilepsy created an international registry of iEEG patients implanted between 2005 and 2019 with ≥1 year of follow-up. We used propensity score matching to control exposure selection bias and generate comparable cohorts. Study endpoints were: (1) likelihood of resection after iEEG; (2) seizure freedom at last follow-up; and (3) complications (composite of postoperative infection, symptomatic intracranial hemorrhage, or permanent neurological deficit).Results: Ten study sites from 7 countries and 3 continents contributed 2,012 patients, including 1,468 (73%) eligible for analysis (526 SDE and 942 SEEG), of whom 988 (67%) underwent subsequent resection. Propensity score matching improved covariate balance between exposure groups for all analyses. Propensity-matched patients who underwent SDE had higher odds of subsequent resective surgery (odds ratio [OR] = 1.4, 95% confidence interval [CI] 1.05, 1.84) and higher odds of complications (OR = 2.24, 95% CI 1.34, 3.74; unadjusted: 9.6% after SDE vs 3.3% after SEEG). Odds of seizure freedom in propensity-matched resected patients were 1.66 times higher (95% CI 1.21, 2.26) for SEEG compared with SDE (unadjusted: 55% seizure free after SEEG-guided resections vs 41% after SDE). Interpretation: In comparison to SEEG, SDE evaluations are more likely to lead to brain surgery in patients with drugresistant epilepsy but have more surgical complications and lower probability of seizure freedom. This comparativeeffectiveness study provides the highest feasible evidence level to guide decisions on iEEG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.