Strongly-coupled theories at the TeV can naturally drive a long period of supercooling in the early universe. Trapped into the deconfined phase, the universe could inflate and cool down till the temperature reaches the QCD strong scale. We show how at these low temperatures QCD effects are important and could trigger the exit from the long supercooling era. We also study the implications on relic abundances. In particular, the latent heat released at the end of supercooling could be the reason for the similarities between dark matter and baryon energy densities. The axion abundance could also be significantly affected, allowing for larger values of the axion decay constant. Finally, we discuss how a long supercooling epoch could lead to an enhanced gravitational wave signal.
We provide ingredients and recipes for computing neutrino signals of TeV-scale Dark Matter (DM) annihilations in the Sun. For each annihilation channel and DM mass we present the energy spectra of neutrinos at production, including: stateof-the-art energy losses of primary particles in solar matter, secondary neutrinos, electroweak radiation. We then present the spectra after propagation to the Earth, including (vacuum and matter) flavor oscillations and interactions in solar matter. We also provide a numerical computation of the capture rate of DM particles in the Sun. These results are available in numerical form. * French national research agency ANR under contract ANR 2010 BLANC 041301.
On-shell amplitude methods have proven to be extremely efficient for calculating anomalous dimensions. We further elaborate on these methods to show that, by the use of an angular momentum decomposition, the one-loop anomalous dimensions can be reduced to essentially a sum of products of partial waves. We apply this to the SM EFT, and show how certain classes of anomalous dimensions have their origin in the same partial-wave coefficients. We also use our result to obtain a generic formula for the one-loop anomalous dimensions of nonlinear sigma models at any order in the energy expansion, and apply our method to gravity, where it proves to be very advantageous even in the presence of IR divergencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.