We report the definitive assessment of a measurable (half a kJ/mol) charge-transfer (CT) component in the interaction of water with the noble gases. The CT is found to be strongly stereoselective and is mediated by a highly asymmetric, donor/acceptor concerted role of the two hydrogen atoms, which can in fact dictate the equilibrium geometry of the adducts. This finding may be of general relevance in explaining the known peculiar orientational features of water's interactions. By using an original method of partial integration of the change in electron density occurring upon the formation of Ng-water complexes (computed with accurate ab initio methods and basis sets), we map the local charge displacement along the whole intermolecular region and are thus able to appraise CT effects free of the inherent ambiguity of charge decomposition models. With this, it was possible to prove that a small CT (of the order of a couple of millielectrons at most) takes place from Ng to water. Most importantly, this CT correlates quantitatively with some unexpected "glory" quantum interference effects observed in high-resolution molecular-beam Ng-water scattering experiments that indicate a stronger bond than a pure van der Waals force. The energy stabilization associated with the observed CT does not exceed half a kJ mol(-1). The Ng-water CT is found to be strongly stereoselective and is mediated by a highly asymmetric, donor-acceptor concerted role of the two hydrogen atoms, which can in fact dictate the equilibrium geometry of the adducts. This finding may be of general relevance in explaining the known peculiar orientational features of water's interactions.
The stereodynamics of the Penning ionization of water molecules by collision with metastable neon atoms, occurring in the thermal energy range, is of great relevance for the understanding of fundamental aspects of the physical chemistry of water. This process has been studied by analyzing the energy spectrum of the emitted electrons previously obtained in our laboratory in a crossed beam experiment [B. G. Brunetti, P. Candori, D. Cappelletti, S. Falcinelli, F. Pirani, D. Stranges, and F. Vecchiocattivi, Chem. Phys. Lett. 539-540, 19 (2012)]. For the spectrum analysis, a novel semiclassical method is proposed, that assumes ionization events as mostly occurring in the vicinities of the collision turning points. The potential energy driving the system in the relevant configurations of the entrance and exit channels, used in the spectrum simulation, has been formulated by the use of a semiempirical method. The analysis puts clearly in evidence how different approaches of the metastable atom to the water molecule lead to ions in different electronic states. In particular, it provides the angular acceptance cones where the selectivity of the process leading to the specific formation of each one of the two energetically possible ionic product states of H2O(+) emerges. It is shown how the ground state ion is formed when neon metastable atoms approach water mainly perpendicularly to the molecular plane, while the first excited electronic state is formed when the approach occurs preferentially along the C2v axis, on the oxygen side. An explanation is proposed for the observed vibrational excitation of the product ions.
The double photoionization of CO(2) molecules has been studied in the 34-50 eV photon energy range, by the use of synchrotron radiation and detecting electron-ion and electron-ion-ion coincidences. Three processes have been observed: (i) the formation of the CO(2)(2+) molecular dication, (ii) the production of a metastable (CO(2)(2+))* that dissociates, with an apparent lifetime of 3.1 micros, giving rise to CO(+) and O(+) ions, and (iii) the dissociation leading to the same products, but occurring with a lifetime shorter than 0.05 micros. The relative dependence on the photon energy of the cross section for such processes has been measured. While for the production of the molecular dication a threshold is observed, in agreement with the vertical threshold for double ionization of CO(2), for the dissociative processes the threshold appears to be lower than that value, indicating the presence of an indirect dissociation, probably leading to the formation of CO(+) together with a neutral autoionizing oxygen atom.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.