Multirotor UAVs have become ubiquitous in commercial and public use. As they become more affordable and more available, the associated security risks further increase, especially in relation to airspace breaches and the danger of drone-to-aircraft collisions. Thus, robust systems must be set in place to detect and deal with hostile drones. This paper investigates the use of deep learning methods to detect UAVs using acoustic signals. Deep neural network models are trained with mel-spectrograms as inputs. In this case, Convolutional Neural Networks (CNNs) are shown to be the better performing network, compared with Recurrent Neural Networks (RNNs) and Convolutional Recurrent Neural Networks (CRNNs). Furthermore, late fusion methods have been evaluated using an ensemble of deep neural networks, where the weighted soft voting mechanism has achieved the highest average accuracy of 94.7%, which has outperformed the solo models. In future work, the developed late fusion technique could be utilized with radar and visual methods to further improve the UAV detection performance.
Satellite navigation has become ubiquitous to plan and track travelling. Having access to a vehicle’s position enables the prediction of its destination. This opens the possibility to various benefits, such as early warnings of potential hazards, route diversions to pass traffic congestion, and optimizing fuel consumption for hybrid vehicles. Thus, reliably predicting destinations can bring benefits to the transportation industry. This paper investigates using deep learning methods for predicting a vehicle’s destination based on its journey history. With this aim, Dense Neural Networks (DNNs), Long Short-Term Memory (LSTM) networks, Bidirectional LSTM (BiLSTM), and networks with and without attention mechanisms are tested. Especially, LSTM and BiLSTM models with attention mechanism are commonly used for natural language processing and text-classification-related applications. On the other hand, this paper demonstrates the viability of these techniques in the automotive and associated industrial domain, aimed at generating industrial impact. The results of using satellite navigation data show that the BiLSTM with an attention mechanism exhibits better prediction performance destination, achieving an average accuracy of 96% against the test set (4% higher than the average accuracy of the standard BiLSTM) and consistently outperforming the other models by maintaining robustness and stability during forecasting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.