The mammalian oviduct is a highly specialized structure where fertilization and early embryonic development occur. Its mucosal epithelium is involved in maintaining and modulating a dynamic intraluminal fluid. The oviductal epithelium consists of ciliated and non-ciliated (secretory) cells whose differentiation and activity are sex hormone-dependent. In this study, we investigated for the first time both the morphology and the glycan composition of baboon oviductal epithelium during the menstrual cycle. Oviducts were laparoscopically removed from 14 healthy adult female Papio hamadryas whose menstrual cycle phase was assessed based on the sex hormone levels and the vaginal cytology features. Histological investigations were carried out on fimbriae, infundibulum, ampulla, and isthmus separately fixed in 4% (v/v) paraformaldehyde, embedded in paraffin wax, and stained with hematoxylin-eosin for morphological analyses and using a panel of nine fluorescent lectins for glycoconjugate characterization. The histomorphological analysis revealed that in the entire oviduct (i) the ciliated and non-ciliated cells were indistinguishable during the follicular and luteal phases, whereas they were highly differentiated during the preovulatory phase when the non-ciliated cells exhibited apical protrusions, (ii) the epithelium height was significantly higher in the preovulatory phase compared to other menstrual phases, and (iii) the number of ciliated cells significantly (p ≤ 0.05) increased from the fimbriae to the infundibulum and progressively reduced in the other oviductal segments with the lower presence of ciliated cells in the isthmus. The glycan characterization revealed a complex and region-specific composition during the different phases of the menstrual cycle. It can be summarized as follows: (i) high-mannosylated N-linked glycans (Con A reactivity) were present throughout the oviductal epithelium during the entire menstrual cycle and characteristically in the apical protrusions of non-ciliated cells of the ampulla during the preovulatory phase; (ii) sialoglycans with α2,3-linked sialic acids (MAL II binding) were expressed along the entire oviductal surface only during the preovulatory phase, whereas α2,6-linked ones (SNA affinity) were also detected in the surface of the luteal phase, although during the preovulatory phase they were characteristically found in the glycocalyx of the isthmus cilia, and O-linked sialoglycans with sialic acids linked to Galβl,3GalNAc (T antigen) (KsPNA) and terminal N-acetylgalactosamine (Tn antigen) (KsSBA) were found in the entire oviductal surface during all phases of the menstrual cycle; (iii) GalNAc terminating O-linked glycans (HPA staining) were mainly expressed in the entire oviducts of the luteal and preovulatory phases, and characteristically in the apical protrusions of the isthmus non-ciliated cells of the preovulatory phase; and (iv) fucosylated glycans with α1,2-linked fucose (LTA reactivity) occurred in the apical surface of fimbriae during the luteal phase, whereas α1,3/4-linked fucose (UEA I binders) were present in the apical protrusions of the ampulla non-ciliated cells and in the apical surface of isthmus during the preovulatory phase as well as in the isthmus apical surface of follicular-phase oviducts. These results demonstrate for the first time that morphological and glycan changes occur in the baboon oviductal epithelium during the menstrual cycle. Particularly, the sex hormone fluctuation affects the glycan pattern in a region-specific manner, probably related to the function of the oviductal segments. The findings add new data concerning baboons which, due to their anatomical similarity to humans, make an excellent model for female reproduction studies.
Objective To evaluate the feasibility of laparoscopic salpingectomy in baboons (Papio hamadryas). We hypothesized that laparoscopic salpingectomy could be performed in baboon species within a reasonable amount of surgical time, with minor complications occurring at low rates. Study design Case series and technique description. Animals Sixteen baboons (n = 16). Methods The surgical procedures were performed using the 3‐port technique, with 5 mm instruments and a telescope placed at the umbilical and hypogastric regions. A salpinx dissection was performed, using a radiofrequency bipolar vessel sealing device, from the fimbriae to the uterine attachments. We evaluated the surgical duration, learning curve, and intraoperative and early postoperative complications. Results Ten adult and 6 subadult baboons with a mean weight of 9.32 kg, a range of 4‐14.2 kg, and a standard deviation (SD) of 3.09 kg were included in the study. The total duration of surgery was 28.75 min (range, 16‐50 min; SD, 9.60 min). The installation phase was completed in a mean time of 7.68 min (range, 3‐15 min; SD, 3.43 min), and the time to complete the salpingectomy of both salpinges was 9.68 min (range, 4‐20 min; SD, 3.97 min). No complications were observed in the postoperative period. Conclusion Laparoscopic salpingectomy in Papio hamadryas was feasible, with an acceptable surgical time, low invasiveness, and only minor technical perioperative complications. Clinical significance Laparoscopic salpingectomy could be a viable and safe therapeutic option in nonhuman primate birth‐control programs.
Salmonellosis is an infectious disease affecting both animals and humans. Antimicrobial resistant (AMR) and biofilm-producing Salmonella spp., frequently detected in reptiles (who can then act as asymptomatic carriers for warm-blooded animals), have developed resistance to biocides; this represents a warning for the emergence of biocide/antimicrobial cross-resistance. The aim of this study was to evaluate the efficacy of Thymus vulgaris L. essential oil (TEO) in inhibiting bacterial growth and biofilm production of Salmonella spp., which had been isolated from wild reptiles housed in a Zoo in Italy. The resistance profile against different classes of antibiotics showed that all the isolates were susceptible to the tested antibiotics, despite the presence of several AMR genes. All the isolates were also tested with aqueous solutions of TEO at different dilutions (5% to 0.039%). Interestingly, TEO proved effective both in inhibiting bacterial growth at low dilutions, with MIC and MBC values ranging between 0.078% and 0.312%, and in inhibiting biofilm production, with values ranging from 0.039% to 0.156%. TEO demonstrated effective bioactivity against the biofilm producer Salmonella spp., proving to be a valid disinfectant for the prevention of salmonellosis from reptiles, a possible source of infection for humans exposed to the reptiles’ environment.
The study aims to describe the anesthetic and airway management of baboons (Papio hamadryas) undergoing laparoscopic salpingectomy with a laryngeal mask airway (LMA) device. Eleven baboons received tiletamine-zolazepam and medetomidine; anesthesia was induced with propofol. An LMA was positioned for oxygen and isoflurane administration in spontaneous respiration. Heart rate (HR), mean arterial pressure (MAP), respiratory rate (RR), end tidal carbon dioxide (EtCO2), minute volume (MV), and peripheral hemoglobin oxygen saturation (SpO2) were recorded before (PREPP) and immediately after abdomen insufflation (PP1), at 10 (PP2), 20 (PP3), and 30 (PP4) minutes during pneumoperitoneum, and after (POSTPP) pneumoperitoneum. The respiratory rate was significantly higher at all times compared to PREPP. The end tidal carbon dioxide concentration was significantly higher at PP2, PP3, PP4, and POSTPP, compared to the previous times. The higher values for RR and EtCO2 were registered at PP4: 22.7 (95% CI 17.6–27.8) breaths/min and 57.9 (95% CI 51.9–63.8) mmHg, respectively. The minute volume was significantly higher at PP4 and POSTPP compared to the other times. The higher value for MV was registered at POSTPP (269.1 (95% CI 206.1–331.8) mL/kg/min). This protocol is suitable for baboons undergoing laparoscopic salpingectomy. The LMA was easy to insert and allowed for good ventilation, gas exchange, and delivery of the anesthetic in spontaneous breathing baboons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.