After the Fukushima accident, the interest of the public to nuclear safety has growth and the international technical nuclear community has increased his attention in the investigation and the characterization of Severe Accident (SA) scenarios. In order to simulate the different, complex and multi-physical phenomena involved in a SA, computational tools, known as SA codes, have been developed in the last decades. In order to give some insights on the modelling capabilities of these tools and the differences in the calculation results, also related to the user-effect, an analysis of an unmitigated Station Black Out (SBO) occurring in a generic Western three-loops PWR 900 MWe has been carried out by the authors in the framework of the NUGENIA TA-2 ASCOM project. The simulation results of ASTEC code (study carried out with ASTEC V2, IRSN all rights reserved, [2019]), developed by IRSN, and MELCOR 2.2 code, developed by SANDIA for USNRC, have been compared and analyzed. The SBO scenario considered takes into account the intervention of the accumulators as only accident mitigation strategy. Several figures of merits related to the thermal-hydraulic (e.g. primary pressure, cladding temperature, etc.) and to the core degradation (e.g. hydrogen production, etc.) have been considered to describe the accident evolution until the vessel failure, for the two codes comparison.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.