This work presents an overview of the multiple aperture synthetic aperture radar interferometric (MAI) technique, which is primarily used to measure the along-track components of the Earth's surface deformation, by investigating its capabilities and potential applications. Such a method is widely used to monitor the time evolution of ground surface changes in areas with large deformations (e.g., due to glaciers movements or seismic episodes), permitting one to discriminate the three-dimensional (up-down, east-west, north-south) components of the Earth's surface displacements. The MAI technique relies on the spectral diversity (SD) method, which consists of splitting the azimuth (range) Synthetic Aperture RADAR (SAR) signal spectrum into separate sub-bands to get an estimate of the surface displacement along the azimuth (sensor line-of-sight (LOS)) direction. Moreover, the SD techniques are also used to correct the atmospheric phase screen (APS) artefacts (e.g., the ionospheric and water vapor phase distortion effects) that corrupt surface displacement time-series obtained by currently available multi-temporal InSAR (MT-InSAR) tools. More recently, the SD methods have also been exploited for the fine co-registration of SAR data acquired with the Terrain Observation with Progressive Scans (TOPS) mode. This work is primarily devoted to illustrating the underlying rationale and effectiveness of the MAI and SD techniques as well as their applications. In addition, we present an innovative method to combine complementary information of the ground deformation collected from multi-orbit/multi-track satellite observations. In particular, the presented technique complements the recently developed Minimum Acceleration combination (MinA) method with MAI-driven azimuthal ground deformation measurements to obtain the time-series of the 3-D components of the deformation in areas affected by large deformation episodes. Experimental results encompass several case studies. The validity and relevance of the presented approaches are clearly demonstrated in the context of geospatial analyses. several sensors (on-board space or aerial vectors) that have emerged in recent years. A significant role is performed by the technologies based on their use of synthetic aperture radar (SAR) data that allow long-lasting and extensive monitoring of the Earth's surface. SAR sensors are active instruments [7] that have been extensively employed for studying and monitoring the Earth's surface [8][9][10], as well as the surfaces of other celestial bodies such as the solar system planets [11][12][13]. SAR instruments exploit the interaction of packets of electromagnetic waves emitted by RADAR sensors that are backscattered from objects within an observed area. The signals used by radar sensors usually lie in the microwave band (i.e., in the range of wavelengths between 1 cm and 1 m). This means that radar instruments can be used efficiently under any meteorological condition (i.e., in the presence of a significant cloud cover) with a full day-and-nigh...
This work aims to clarify the potential of incoherent and coherent change detection (CD) approaches for detecting and monitoring ground surface changes using sequences of synthetic aperture radar (SAR) images. Nowadays, the growing availability of remotely sensed data collected by the twin Sentinel-1A/B sensors of the European (EU) Copernicus constellation allows fast mapping of damage after a disastrous event using radar data. In this research, we address the role of SAR (amplitude) backscattered signal variations for CD analyses when a natural (e.g., a fire, a flash flood, etc.) or a human-induced (disastrous) event occurs. Then, we consider the additional pieces of information that can be recovered by comparing interferometric coherence maps related to couples of SAR images collected between a principal disastrous event date. This work is mainly concerned with investigating the capability of different coherent/incoherent change detection indices (CDIs) and their mutual interactions for the rapid mapping of “changed” areas. In this context, artificial intelligence (AI) algorithms have been demonstrated to be beneficial for handling the different information coming from coherent/incoherent CDIs in a unique corpus. Specifically, we used CDIs that synthetically describe ground surface changes associated with a disaster event (i.e., the pre-, cross-, and post-disaster phases), based on the generation of sigma nought and InSAR coherence maps. Then, we trained a random forest (RF) to produce CD maps and study the impact on the final binary decision (changed/unchanged) of the different layers representing the available synthetic CDIs. The proposed strategy was effective for quickly assessing damage using SAR data and can be applied in several contexts. Experiments were conducted to monitor wildfire’s effects in the 2021 summer season in Italy, considering two case studies in Sardinia and Sicily. Another experiment was also carried out on the coastal city of Houston, Texas, the US, which was affected by a large flood in 2017; thus, demonstrating the validity of the proposed integrated method for fast mapping of flooded zones using SAR data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.