In this paper we mirror the framework of generalised (non-)linear models to define the family of generalised Age-Period-Cohort stochastic mortality models which encompasses the vast majority of stochastic mortality projection models proposed to date, including the well-known Lee-Carter and Cairns-Blake-Dowd models. We also introduce the R package StMoMo which exploits the unifying framework of the generalised Age-Period-Cohort family to provide tools for fitting stochastic mortality models, assessing their goodness of fit and performing mortality projections. We illustrate some of the capabilities of the package by performing a comparison of several stochastic mortality models applied to the England and Wales population.
This is the accepted version of the paper.This version of the publication may differ from the final published version. Permanent repository link ABSTRACTLongevity swaps have been one of the major success stories of pension scheme derisking in recent years. However, with some few exceptions, all of the transactions to date have been bespoke longevity swaps based upon the mortality experience of a portfolio of named lives. In order for this market to start to meet its true potential, solutions will ultimately be needed that provide protection for all types of members, are cost effective for large and smaller schemes, are tradable, and enable access to the wider capital markets. Index-based solutions have the potential to meet this need; however concerns remain with these solutions. In particular, the basis risk emerging from the potential mismatch between the underlying forces of mortality for the index reference portfolio and the pension fund/annuity book being hedged is the principal issue that has, to date, prevented many schemes progressing their consideration of index-based solutions. Two-population stochastic mortality models offer an alternative to overcome this obstacle as they allow market participants to compare and project the mortality experience for the reference and target populations and thus assess the amount of demographic basis risk involved in an index-based longevity hedge. In this paper, we systematically assess the suitability of several multi-population stochastic mortality models for assessing basis risks and provide guidelines on how to use these models in practical situations paying particular attention to the data requirements for the appropriate calibration and forecasting of such models.
In a quantitative model with uncertain inputs, the uncertainty of the output can be summarized by a risk measure. We propose a sensitivity analysis method based on derivatives of the output risk measure, in the direction of model inputs. This produces a global sensitivity measure, explicitly linking sensitivity and uncertainty analyses. We focus on the case of distortion risk measures, defined as weighted averages of output percentiles, and prove a representation of the sensitivity measure that can be evaluated on a Monte Carlo sample, as a weighted average of gradients over the input space. When the analytical model is unknown or hard to work with, nonparametric techniques are used for gradient estimation. This process is demonstrated through the example of a nonlinear insurance loss model. Furthermore, the proposed framework is extended in order to measure sensitivity to constant model parameters, uncertain statistical parameters, and random factors driving dependence between model inputs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.