This work summarizes the results of a geomorphological and bivariate statistical approach to gully erosion susceptibility mapping in the Turbolo stream catchment (northern Calabria, Italy). An inventory map of gully erosion landforms of the area has been obtained by detailed field survey and air photograph interpretation. Lithology, land use, slope, aspect, plan curvature, stream power index, topographical wetness index and length-slope factor were assumed as gully erosion predisposing factors. In order to estimate and validate gully erosion susceptibility, the mapped gully areas were divided in two groups using a random partitions strategy. One group (training set) was used to prepare the susceptibility map, using a bivariate statistical analysis (Information Value method) in GIS environment, while the second group (validation set) to validate the susceptibility map, using the success and prediction rate curves. The validation results showed satisfactory agreement between the susceptibility map and the existing data on gully areas locations; therefore, over 88% of the gullies of the validation set are correctly classified falling in high and very high susceptibility areas. The susceptibility map, produced using a methodology that is easy to apply and to update, represents a useful tool for sustainable planning, conservation and protection of land from gully processes. Therefore, this methodology can be used to assess gully erosion susceptibility in other areas of Calabria, as well as in other regions, especially in the Mediterranean area, that have similar morphoclimatic features and sensitivity to concentrated erosion.
M. Conforti (
An integrated morpho-stratigraphic approach has been used to reconstruct the Quaternary history of the Boiano basin, the largest tectonic depression of the Molise Apennine (Italy). Lacustrine, marshy and fluvial environments alternate all along the investigated infilling succession as a response to tectonic subsidence, volcaniclastic inputs and climate changes, from ca. 500 ka. Two tephra layers 40Ar/39Ar have been dated and referred to the Middle Pleistocene explosive activity of the Roccamonfina volcano, while a younger tephra layer has been related to the Campi Flegrei Neapolitan Yellow Tuff (ca. 15 ka). Pollen analysis has highlighted the vegetation changes related to the 100 ka glacial–interglacial cyclicity, between MIS 13 and 2. From 500 to 350 ka, a strong subsidence led to lacustrine deposition, while between 350 and 250 ka, a decrease in subsidence rates caused the transition to fluvial–marshy conditions and, at a later stage, to floodplain environments. The analysis of palaeosurfaces allowed the eomorphological evolution of the basin to be reconstructed since the Middle Pleistocene and the morpho-sedimentary events to be related to the SW-NE extensional tectonics affecting this sector of the central-southern Apennine. This tectonic behavior is also testified by the differential subsidence rates recorded within the basin through the analysis of two deep cores drilled in the center of the Boiano town
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.