The interest in using byproducts from agro-food industries as a rearing substrate for insects is increasing rapidly. We investigated the influence of byproducts of vegetal origin (okara—a byproduct of soy milk production, maize distillers with solubles, brewer’s grains), used as rearing diet for black soldier fly larvae (BSFL), on the following parameters: biomass production, substrate reduction (SR), nutritional profile and in vitro digestibility, and larval gut microbiota. Hen diet was used as a control substrate. The highest larval biomass was collected on maize distillers, whereas the highest SR was observed on okara. The rearing substrate affected ash, ether extract, and chitin larval content. The BSFL reared on okara were characterized by a lower lauric acid content (17.6% of total fatty acids). Diets also influenced in vitro crude protein digestibility (%) for monogastrics, with the highest values for BSFL reared on maize distillers (87.8), intermediate for brewer’s grains and okara BSFL, and the lowest for hen BSFL (82.7). The nutritive value for ruminants showed a lower Net Energy for lactation for BSFL reared on hen diet than okara and dried maize distillers BSFL. The different byproducts showed an influence on the larval gut microbiota, with a major bacterial complexity observed on larvae fed with the hen diet. The neutral detergent fiber concentration of dietary substrate was negatively correlated with Firmicutes and Actinobacteria relative abundance. Insects valorized byproducts converting them into high-value larval biomass to be used for feed production. The results evidenced the effects of the tested byproducts on the measured parameters, underling the chemical composition importance on the final insect meal quality.
This study investigated the effects of 2 Achillea moschata essential oils extracted from plants collected in 2 different valleys of the Italian Alps and 3 pure compounds of oils — bornyl acetate (BOR), camphor (CAM), and eucalyptol (EUCA) — on in vitro ruminal fermentation and microbiota. An in vitro batch fermentation experiment (Exp. 1) tested the addition of all of the substances (2 essential oils and 3 compounds) in fermentation bottles (120 mL) at 48 h of incubation, whereas a subsequent in vitro continuous culture experiment (Exp. 2) evaluated the pure compounds added to the fermenters (2 L) for a longer incubation period (9 d). In both experiments, total mixed rations were incubated with the additives, and samples without additives were included as the control (CTR). Each treatment was tested in duplicate and was repeated in 3 and 2 fermentation runs in Exp. 1 and 2, respectively. Gas production (GP) in Exp. 1 was similar for all of the treatments, and short chain volatile fatty acid (SCFA) production was similar in both experiments except for a decrease of SCFA produced ( P = 0.029) due to EUCA addition in Exp. 2. Compared to CTR, BOR and CAM reduced the valerate proportion ( P = 0.04) in Exp. 1, and increased ( P < 0.01) the acetate proportion in Exp. 2. All treatments increased ( P < 0.01) total protozoa counts (+36.7% and +48.4% compared to CTR on average for Exp. 1 and 2, respectively). In Exp. 1, all of the treatments lowered the Bacteroidetes and Firmicutes and increased the Proteobacteria relative abundances ( P < 0.05), whereas in Exp. 2, the EUCA addition increased ( P = 0.012) the Ruminococcus . In Exp. 1, methane (CH 4 ) as a proportion of the GP was lowered ( P = 0.004) by the addition of CAM and EUCA compared to CTR, whereas in Exp. 2, EUCA reduced the amount of stoichiometrically calculated CH 4 compared to CTR. Overall, essential oils extracted from A. moschata and the pure compounds did not depress in vitro rumen fermentation, except for EUCA in Exp. 2. In both experiments, an increase of the protozoal population occurred for all the additives.
Both condensed and hydrolysable tannins (CTs and HTs, respectively) have the ability to reduce enteric CH4 production in ruminants. However, the precise mechanism of action is not fully understood. Among the proposed hypotheses are the reduction of ruminal digestibility, direct control action on protozoa, reduction of archaea, and a hydrogen sink mechanism. In this in vitro study, which simulated rumen fermentation, two additives, one containing CTs (70% based on DM) from quebracho and one with HTs (75% based on DM) from chestnut, at four levels of inclusion (2, 4, 6, 8% on an as-fed basis) were added to the fermentation substrate and tested against a negative control. Both types of tannins significantly reduced total gas (GP) and CH4 (ml/g DM) production during the 48 h of incubation. The lower GP and CH4 production levels were linked to the reduction in dry matter digestibility caused by CTs and HTs. Conversely, no significant differences were observed for the protozoan and archaeal populations, suggesting a low direct effect of tannins on these rumen microorganisms in vitro. However, both types of tannins had negative correlations for the families Bacteroidales_BS11 and F082 and positive correlations for the genera Prevotella and Succinivibrio. Regarding the fermentation parameters, no differences were observed for pH and total volatile fatty acid production, while both CTs and HTs linearly reduced the NH3 content. CTs from quebracho were more effective in reducing CH4 production than HTs from chestnut. However, for both types of tannins, the reduction in CH4 production was always associated with a lower digestibility without any changes in archaea or protozoa. Due to the high variability of tannins, further studies investigating the chemical structure of the compounds and their mechanisms of action are needed to understand the different results reported in the literature.
Characterization of the microbial community of a river can provide various indications, such as its general state of health or the presence of contamination. Furthermore, the study of Bacteroidetes, which have a high degree of host specificity, can provide information on the species involved in any fecal contamination. The analysis of the 16S rRNA was used to characterize the bacterial community of the Lambro river (Italy) through. The results, which were obtained by analyzing water from 15 sampling points, show a reduction in the complexity of the bacterial community as the river enters a densely populated region. The cause could be a source of chemical or physical contamination that carries out a positive selection toward some bacterial species and negative toward others. In addition, a notable increase in the percentage of Bacteroidetes was reported, especially when the river enters regions characterized by high agricultural and livestock activity, such as cattle and pig farming. However, in the samples taken from this area, no Bacteroidetes ascribable to these two species or to the other species considered (i.e., human, dog, and cat) were found. Surprisingly, suspected bacterial contamination of swine origin was identified in a sparsely populated region characterized by small family farms. Finally, the efficient treatment of urban wastewater was confirmed as no markers of fecal pollution of human origin were identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.