This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Neuroaesthetic research suggests that aesthetic appreciation results from the interaction between the object perceptual features and the perceiver's sensory processing dynamics. In the present study, we investigated the relationship between aesthetic appreciation and attentional modulation at a behavioural and psychophysiological level.In a first experiment, fifty-eight healthy participants performed a visual search task with abstract stimuli containing more or less natural spatial frequencies and subsequently were asked to give an aesthetic evaluation of the images. The results evidenced that response times were faster for more appreciated stimuli.In a second experiment, we recorded visual evoked potentials (VEPs) during exposure to the same stimuli. The results showed, only for more appreciated images, an enhancement in C1 and N1, P3 and N4 VEP components. Moreover, we found increased attention-related occipital alpha desynchronization for more appreciated images.We interpret these data as indicative of the existence of a correlation between aesthetic appreciation and perceptual processing enhancement, both at a behavioural and at a neurophysiological level.
From Kant to current perspectives in neuroaesthetics, the experience of beauty has been described as disinterested, i.e. focusing on the stimulus perceptual features while neglecting self-referred concerns. At a neurophysiological level, some indirect evidence suggests that disinterested aesthetic appreciation might be associated with attentional enhancement and inhibition of motor behaviour. To test this hypothesis, we performed three auditory-evoked potential experiments, employing consonant and dissonant two-note musical intervals. Twenty-two volunteers judged the beauty of intervals (Aesthetic Judgement task) or responded to them as fast as possible (Detection task). In a third Go-NoGo task, a different group of twenty-two participants had to refrain from responding when hearing intervals. Individual aesthetic judgements positively correlated with response times in the Detection task, with slower motor responses for more appreciated intervals. Electrophysiological indexes of attentional engagement (N1/P2) and motor inhibition (N2/P3) were enhanced for more appreciated intervals. These findings represent the first experimental evidence confirming the disinterested interest hypothesis and may have important applications in research areas studying the effects of stimulus features on learning and motor behaviour.
Neurocomputational models of cognition have framed aesthetic appreciation within the domain of knowledge acquisition and learning, suggesting that aesthetic appreciation might be considered as a hedonic feedback on successful perceptual learning dynamics. Such hypothesis, however, has never been empirically demonstrated yet. In order to investigate the relationship between aesthetic appreciation and learning, we measured the EEG mismatch negativity (MMN) response to more or less appreciated musical intervals, which is considered as a reliable index of perceptual learning. To this end, we measured the MMN to frequency (Hz) standard and frequency deviant musical intervals (Experiment 1) while participants were asked to judge their beauty. For each single stimulus, we also computed an information-theoretic index of perceptual learning (Bayesian surprise). We found that more appreciated musical intervals were associated with a larger MMN responses, which, in turn, correlated with trial-by-trial fluctuations in Bayesian surprise (Experiment 1). Coherently with previous results, Bayesian surprise was also found to correlate with slower RTs in a detection task of the same stimuli, evidencing that motor behavior is inhibited in presence of surprising sensory states triggering perceptual learning (Experiment 2). Our results provide empirical evidence of the existence of a positive correlation between aesthetic appreciation and EEG indexes of perceptual learning. We argue that the sense of beauty might have evolved to signal the nervous system new sensory knowledge acquisition and motivate the individual to search for informationally profitable stimuli.
An important implication of several recent accounts of motor control is that sensory feedback from self-generated movements is relatively attenuated based on predictions issued by the agent's motor system. Such a relative attenuation of sensory information during actions has already been demonstrated in the somatosensory domain. Here, we used functional magnetic resonance imaging (fMRI) and a virtual reality-based setup to investigate a potential attenuation of brain responses to realistic visual movement feedback during active vs. passive right-hand movements. The participants' right unseen hand was rotated either by the participants themselves or by the experimenter, while the participants received visual movement feedback via a photorealistic virtual 3D hand driven by their real hand movements, or received no visual feedback. We observed a significant interaction between movement type (active vs. passive) and movement feedback (vision vs. no vision) in the right superior temporal sulcus (STS), which showed relatively attenuated blood-oxygen-level-dependent (BOLD) signal differences in movements with vs. without visual feedback when those movements were actively vs. passively executed. This finding suggests that STS activity caused by visual feedback from the moving body may be attenuated based on the agent's motor predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.