The replacement of natural lands with urban structures has multiple environmental consequences, yet little is known about the magnitude and extent of albedo-induced warming contributions from urbanization at the global scale in the past and future. Here, we apply an empirical approach to quantify the climate effects of past urbanization and future urbanization projected under different shared socioeconomic pathways (SSPs). We find an albedo-induced warming effect of urbanization for both the past and the projected futures under three illustrative scenarios. The albedo decease from urbanization in 2018 relative to 2001 has yielded a 100-year average annual global warming of 0.00014 [0.00008, 0.00021] °C. Without proper mitigation, future urbanization in 2050 relative to 2018 and that in 2100 relative to 2018 under the intermediate emission scenario (SSP2-4.5) would yield a 100-year average warming effect of 0.00107 [0.00057,0.00179] °C and 0.00152 [0.00078,0.00259] °C, respectively, through altering the Earth’s albedo.
Climate benefit assessments of bioenergy crops often focus on biogeochemical impacts, paying little if any attention to biogeophysical impacts. However, land conversions required for large-scale bioenergy crop production are substantial and may directly affect the climate by altering surface energy balance. In the US, such land conversions are likely to be met in part by converting Conservation Reserve Program (CRP) grassland to bioenergy crops. Here, we converted three 22 year old CRP smooth brome grass fields into no-till corn, switchgrass, or restored prairie bioenergy crops. We assessed the biogeophysical climate impact of the conversions using albedo changes relative to unconverted reference CRP grassland. The corn and perennial fields had higher annual albedo than the grassland they replaced—causing cooling of the local climate. The cooling of the corn field occurred solely during the non-growing season—especially when surfaces were snow-covered, whereas the cooling of the perennial fields was more prominent during the growing season. Compared to biogeochemical impacts with fossil fuel offsets for the same land conversions over eight years, the annual albedo-induced climate benefits add ∼35% and ∼78% to the annual biogeochemical benefits provided from the switchgrass and restored prairie fields, respectively, and offset ∼3.3% of the annual greenhouse gas (GHG) emissions from the corn field. We conclude that albedo-induced climate mitigation from conversion of CRP lands to perennial but not annual bioenergy crops can be substantial, and future climate impact assessments of bioenergy crops should include albedo changes in addition to GHG balances in order to better inform climate policies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.