Performance degradation data obtained from single Solid oxide fuel cells, tested at 850 degrees C with air and humidified H-2 and using Ni-YSZ anode supported cells, are presented here. Microscopic investigation is carried out on both anode and cathode to quantify variations in the morphology at different operation times. The comparison between the measurements On the cells and the SEM Image analysis, allows to conclude that there is no relationship between the initial cell activation and microstructural modifications of the electrodes. On the other hand, it was found that cell degradation is Strictly related to the coarsening of Ni particles occurring in the anode. A theoretical analysis based. on an electrode micro-model has been performed in order to compare the variation in performance, expected from particle size change, with the observed data. The model confirmed the conclusions of the experimental results
The degradation of the electrochemical performance of solid oxide fuel cell (SOFC) devices is a major hurdle to overcome before commercialisation. The interplay between the phenomena and the long testing times complicate the research, which highlights the relevance of modelling to propose mitigation approaches.This study comprises two parts. This Part II proposes approaches for the simulation of the degradation induced by: (i) interconnect corrosion, (ii) loss of ionic conductivity of the ion-conducting materials, (iii) nickel particle growth in the anode, (iv) chromium contamination and (v) formation of insulating phases in the cathode. The literature survey highlights the lack of data for a completely consistent calibration of the models, despite the simplifications. The support for the implementation is the electrochemical model validated in Part I and a two-dimensional model of the cell and interconnection system. The cathode largely contributes to the degradation. The local overpotential predominantly governs chromium contamination, which can promote the formation of insulating phases, as operation proceeds. The local electronic current density has comparatively a weak direct influence on the degradation. Qualitative agreement with experimental data from the literature could be achieved, without dedicated adjustments of the parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.