Herein, the sliding wear behavior of AlSi10Mg samples realized using laser‐based powder bed fusion (LPBF) is investigated via pin‐on‐disc (PoD) tests, before and after T6 heat treatment. The changes in the microstructure, density, and hardness induced by heat treatment are correlated with the tribological behavior of the alloy. Furthermore, short wear tests are conducted and the resulting wear tracks are investigated through scanning electron microscopy (SEM), equipped with an energy‐dispersive spectroscopy (EDS) microprobe to elucidate how the wear mechanisms evolve with sliding distance. For comparison, gravity cast (GC) AlSi10Mg samples are also characterized and tested. The as‐built additive manufacturing (AM) sample exhibits the lowest wear rate and coefficient of friction because of its high hardness and relative density, whereas the heat‐treated sample shows the worst behavior in comparison with the GC samples. The results suggest a significant influence of porosity on the wear behavior of AM alloys.
Gray cast iron (GCI) with a pearlitic matrix and type-A graphite remains the most widely used material in the manufacturing of brake discs. To reduce the environmental impact of disc wear during braking, alternative materials and/or compositions to the standard ones are being studied. In this study, the effect of variation in niobium content (0–0.7 wt%) on microstructure and wear behavior of samples machined from brake discs made of hypoeutectic gray cast iron was investigated. The wear behavior of GCI was examined through pin-on-disc (PoD) wear tests using low-metallic-friction material discs as the counterparts. Microstructural analyses and hardness measurements were also conducted to evaluate the effect of Nb addition on the morphology of graphite, eutectic cells, and distribution of carbides. In addition, the wear mechanisms of different samples were evaluated using scanning electron microscope analysis. The results revealed that adding 0.3% of Nb promotes the highest wear resistance of the alloys.
In this paper, wear properties of samples manufactured using thixocasting were compared with those of components obtained using low-pressure die-casting and additive manufacturing in order to assess the relationship between material performance and production technologies, both conventional and innovative. The investigated items were made with AlSi7Mg alloy. First, microstructural analysis and hardness measurements were carried out. Subsequently, pin-on-disk wear tests were performed. Wear behavior of the samples was studied considering both coefficient of friction and wear rate, while the damage mechanism was analyzed by observation of the worn paths using scanning electron microscope, correlating the behavior to the specific microstructure. In addition, the effect of selected heat-treated conditions, relevant for real applications, on wear properties was also evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.