The neuromodulator serotonin (5-HT) has been implicated in a variety of functions that involve patience or impulse control. Many of these effects are consistent with a long-standing theory that 5-HT promotes behavioral inhibition, a motivational bias favoring passive over active behaviors. To further test this idea, we studied the impact of 5-HT in a probabilistic foraging task, in which mice must learn the statistics of the environment and infer when to leave a depleted foraging site for the next. Critically, mice were required to actively nose-poke in order to exploit a given site. We show that optogenetic activation of 5-HT neurons in the dorsal raphe nucleus increases the willingness of mice to actively attempt to exploit a reward site before giving up. These results indicate that behavioral inhibition is not an adequate description of 5-HT function and suggest that a unified account must be based on a higher-order function.
A key question in neuroscience is at which level functional meaning emerges from biophysical phenomena. In most vertebrate systems, precise functions are assigned at the level of neural populations, while single-neurons are deemed unreliable and redundant. Here we challenge this view and show that many single-neuron quantities, including voltages, firing thresholds, excitation, inhibition, and spikes, acquire precise functional meaning whenever a network learns to transmit information parsimoniously and precisely to the next layer. Based on the hypothesis that neural circuits generate precise population codes under severe constraints on metabolic costs, we derive synaptic plasticity rules that allow a network to represent its time-varying inputs with maximal accuracy. We provide exact solutions to the learnt optimal states, and we predict the properties of an entire network from its input distribution and the cost of activity. Single-neuron variability and tuning curves as typically observed in cortex emerge over the course of learning, but paradoxically coincide with a precise, non-redundant spike-based population code. Our work suggests that neural circuits operate far more accurately than previously thought, and that no spike is fired in vain.
Essential features of the world are often hidden and must be inferred by constructing internal models based on indirect evidence. Here, to study the mechanisms of inference, we establish a foraging task that is naturalistic and easily learned yet can distinguish inference from simpler strategies such as the direct integration of sensory data. We show that both mice and humans learn a strategy consistent with optimal inference of a hidden state. However, humans acquire this strategy more than an order of magnitude faster than mice. Using optogenetics in mice, we show that orbitofrontal and anterior cingulate cortex inactivation impacts task performance, but only orbitofrontal inactivation reverts mice from an inference-based to a stimulus-bound decision strategy. These results establish a cross-species paradigm for studying the problem of inferencebased decision making and begins to dissect the network of brain regions crucial for its performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.