Detailed flow measurements were taken in a centrifugal turbomachine model to investigate the aerodynamic influence of the vaned diffuser on the impeller flow.
The model consists of an unshrouded centrifugal impeller with backswept blades and a rotatable vaned diffuser which enables a continuous variation of the vaned diffuser location with respect to the measuring points.
Phase locked ensemble averaged velocity components have been measured with hot wire probes at the impeller outlet for 30 different relative positions of the probe with respect to the diffuser vanes. The data also include the distribution of the ensemble averaged static pressure at the impeller front end, taken by means of miniature fast response pressure transducers flush mounted at the impeller stationary casing. By circumferentially averaging the results obtained for the different circumferential probe locations, the periodically perturbed impeller flow has been split into a relative steady flow and a stator generated unsteadiness.
The results for the different probe positions have also been correlated in time to obtain instantaneous flow field images in the relative frame, which provide information on the various aspects of the diffuser vane upstream influence on the relative flow leaving the impeller.
The paper analyzes losses and the loss generation mechanisms in a low-pressure turbine (LPT) cascade by proper orthogonal decomposition (POD) applied to measurements. Total pressure probes and time-resolved particle image velocimetry (TR-PIV) are used to determine the flow field and performance of the blade with steady and unsteady inflow conditions varying the flow incidence. The total pressure loss coefficient is computed by traversing two Kiel probes upstream and downstream of the cascade simultaneously. This procedure allows a very accurate estimation of the total pressure loss coefficient also in the potential flow region affected by incoming wake migration. The TR-PIV investigation concentrates on the aft portion of the suction side boundary layer downstream of peak suction. In this adverse pressure gradient region, the interaction between the wake and the boundary layer is the strongest, and it leads to the largest deviation from a steady loss mechanism. POD applied to this portion of the domain provides a statistical representation of the flow oscillations by splitting the effects induced by the different dynamics. The paper also describes how POD can dissect the loss generation mechanisms by separating the contributions to the Reynolds stress tensor from the different modes. The steady condition loss generation, driven by boundary layer streaks and separation, is augmented in the presence of incoming wakes by the wake–boundary layer interaction and by the wake dilation mechanism. Wake migration losses have been found to be almost insensitive to incidence variation between nominal and negative (up to −9 deg) while at positive incidence, the losses have a steep increase due to the alteration of the wake path induced by the different loading distribution.
Laminar separation and transition processes of the boundary layer developing under a strong adverse pressure gradient, typical of Ultra-High-Lift turbine profiles, have been experimentally investigated for a low Reynolds number case. The boundary layer development has been surveyed for different conditions: with steady inflow, with incoming wakes and with the synchronized forcing effects due to both incoming wakes and synthetic jet (zero net mass flow rate jet). In this latter case, the jet Strouhal number has been set equal to half the wakereduced frequency to synchronize the unsteady forcing effects on the boundary layer. Measurements have been taken by means of a single-sensor hot-wire anemometer. For the steady inflow case, particle image velocimetry has been employed to visualize the large-scale vortical structures shed as a consequence of the Kelvin-Helmholtz instability mechanism. For the unsteady inflow cases, a phase-locked ensemble averaging technique, synchronized with the wake and the synthetic jet frequencies, has been adopted to reconstruct the boundary layer space-time evolution. Results have been represented as color plots, for several time instants of the forcing effect period, in order to provide an overall view of the time-dependent transition and separation processes in terms of ensemble-averaged velocity and unresolved unsteadiness distributions. The phase-locked distributions of the unresolved unsteadiness allowed the identification of the instability mechanisms driving transition as well as the Kelvin-Helmholtz structures that grow within the separated shear layer during the incoming wake interval and the synthetic jet operating period. Incoming wakes and synthetic jet effects in reducing and/or suppressing flow separation are investigated in depth.
List of symbols
ClJet momentum coefficient ¼
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.