Efficient and reliable social bot classification is crucial for detecting information manipulation on social media. Despite rapid development, state-of-the-art bot detection models still face generalization and scalability challenges, which greatly limit their applications. In this paper we propose a framework that uses minimal account metadata, enabling efficient analysis that scales up to handle the full stream of public tweets of Twitter in real time. To ensure model accuracy, we build a rich collection of labeled datasets for training and validation. We deploy a strict validation system so that model performance on unseen datasets is also optimized, in addition to traditional cross-validation. We find that strategically selecting a subset of training data yields better model accuracy and generalization than exhaustively training on all available data. Thanks to the simplicity of the proposed model, its logic can be interpreted to provide insights into social bot characteristics.
Massive amounts of fake news and conspiratorial content have spread over social media before and after the 2016 US Presidential Elections despite intense fact-checking efforts. How do the spread of misinformation and fact-checking compete? What are the structural and dynamic characteristics of the core of the misinformation diffusion network, and who are its main purveyors? How to reduce the overall amount of misinformation? To explore these questions we built Hoaxy, an open platform that enables large-scale, systematic studies of how misinformation and fact-checking spread and compete on Twitter. Hoaxy captures public tweets that include links to articles from low-credibility and fact-checking sources. We perform k-core decomposition on a diffusion network obtained from two million retweets produced by several hundred thousand accounts over the six months before the election. As we move from the periphery to the core of the network, fact-checking nearly disappears, while social bots proliferate. The number of users in the main core reaches equilibrium around the time of the election, with limited churn and increasingly dense connections. We conclude by quantifying how effectively the network can be disrupted by penalizing the most central nodes. These findings provide a first look at the anatomy of a massive online misinformation diffusion network.
The global spread of the novel coronavirus is affected by the spread of related misinformation—the so-called COVID-19 Infodemic—that makes populations more vulnerable to the disease through resistance to mitigation efforts. Here, we analyze the prevalence and diffusion of links to low-credibility content about the pandemic across two major social media platforms, Twitter and Facebook. We characterize cross-platform similarities and differences in popular sources, diffusion patterns, influencers, coordination, and automation. Comparing the two platforms, we find divergence among the prevalence of popular low-credibility sources and suspicious videos. A minority of accounts and pages exert a strong influence on each platform. These misinformation “superspreaders” are often associated with the low-credibility sources and tend to be verified by the platforms. On both platforms, there is evidence of coordinated sharing of Infodemic content. The overt nature of this manipulation points to the need for societal-level solutions in addition to mitigation strategies within the platforms. However, we highlight limits imposed by inconsistent data-access policies on our capability to study harmful manipulations of information ecosystems.
Coordinated campaigns are used to influence and manipulate social media platforms and their users, a critical challenge to the free exchange of information online. Here we introduce a general, unsupervised network-based methodology to uncover groups of accounts that are likely coordinated. The proposed method constructs coordination networks based on arbitrary behavioral traces shared among accounts. We present five case studies of influence campaigns, four of which in the diverse contexts of U.S. elections, Hong Kong protests, the Syrian civil war, and cryptocurrency manipulation. In each of these cases, we detect networks of coordinated Twitter accounts by examining their identities, images, hashtag sequences, retweets, or temporal patterns. The proposed approach proves to be broadly applicable to uncover different kinds of coordination across information warfare scenarios.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.