Germline mutations that inactivate BRCA2 promote early-onset cancer with chromosome instability. Here, we report that BRCA2 regulates the spindle assembly checkpoint (SAC). Previously, we reported that BubR1 acetylation is essential for SAC activity. In this study we show that BRCA2 recruits the PCAF acetyltransferase and aids in BubR1 acetylation during mitosis. In the absence of BRCA2, BubR1 acetylation is abolished, and the level of BubR1 decreases during mitosis. Similarly, Brca2deficient mouse embryonic fibroblasts exhibited weak SAC activity. Transgenic mice that were engineered to have interruptions in the BRCA2-BubR1 association exhibited marked decrease of BubR1 acetylation, weakened SAC activity, and aneuploidy. These transgenic mice developed spontaneous tumors at 40% penetrance. Moreover, immunohistochemical analyses of human breast cancer specimens suggested that BRCA2 mutation and BubR1 status is closely linked. Our results provide an explanation for how mutation of BRCA2 can lead to chromosome instability without apparent mutations in SAC components. Developmental Cell BRCA2 Regulates BubR1 Acetylation
Failure of chromosome–spindle attachment and a weakened spindle assembly checkpoint lead to genetic instability and cancer in mice expressing acetylation-deficient BubR1.
Middle East Respiratory Syndrome coronavirus (MERS-CoV) causes severe pulmonary infection, with ∼35 % mortality. Spike glycoprotein (S) of MERS-CoV is a key target for vaccines and therapeutics because S mediates viral entry and membrane-fusion to host cells. Here, four different S subunit proteins, receptor-binding domain (RBD; 358-606 aa), S1 (1-751 aa), S2 (752-1296 aa), and SΔTM (1-1296 aa), were generated using the baculoviral system and immunized in mice to develop neutralizing antibodies. We developed 77 hybridomas and selected five neutralizing mAbs by immunization with SΔTM against MERS-CoV EMC/2012 strain S-pseudotyped lentivirus. However, all five monoclonal antibodies (mAb) did not neutralize the pseudotyped V534A mutation. Additionally, one mAb RBD-14F8 did not show neutralizing activity against pseudoviruses with amino acid substitution of L506 F or D509 G (England1 strain, EMC/2012 L506 F, and EMC/2012 D509 G), and RBD-43E4 mAb could not neutralize the pseudotyped I529 T mutation, while three other neutralizing mAbs showed broad neutralizing activity. This implies that the mutation in residue 506-509, 529, and 534 of S is critical to generate neutralization escape variants of MERS-CoV. Interestingly, all five neutralizing mAbs have binding affinity to RBD, although most mAbs generated by RBD did not have neutralizing activity. Additionally, chimeric antibodies of RBD-14F8 and RBD-43E4 with human Fc and light chain showed neutralizing effect against wild type MERS-CoV KOR/KNIH/002, similar to the original mouse mAbs. Thus, our mAbs can be utilized for the identification of specific mutations of MERS-CoV.
Colorectal cancer (CRC) is one of the most dangerous types of malignant tumors, and cancer metastasis is a major factor in the failure of CRC therapy. Recently, LOXL2 (lysyl oxidase-like 2) has been shown to represent a regulator of epithelial-mesenchymal transition (EMT) in different cancer types. However, LOXL2 has not been reported to be involved in CRC metastasis. In this study, we demonstrated that LOXL2 expression is strongly correlated with the rate of CRC metastasis, it participates in the regulation of EMT-related molecule expression in CRC cells in vitro, and it is involved in migratory potential alterations. Additionally, tissue microarray analysis of CRC patients showed an increase in the probability of developing CRC distant metastasis and a decrease in the survival rate of patients with high LOXL2 expression. The results obtained in this study indicate that LOXL2 is involved in the development and progression of CRC metastasis, and therefore, its expression levels may represent a useful prognostic marker.
The constant presence of the viral genome in Epstein-Barr virus (EBV)-associated gastric cancers (EBVaGCs) suggests the applicability of novel EBV-targeted therapies. The antiviral nucleoside drug, ganciclovir (GCV), is effective only in the context of the viral lytic cycle in the presence of EBV-encoded thymidine kinase (TK)/protein kinase (PK) expression. In this study, screening of the Johns Hopkins Drug Library identified gemcitabine as a candidate for combination treatment with GCV. Pharmacological induction of EBV-TK or PK in EBVaGC-originated tumor cells were used to study combination treatment with GCV in vitro and in vivo. Gemcitabine was found to be a lytic inducer via activation of the ataxia telangiectasia-mutated (ATM)/p53 genotoxic stress pathway in EBVaGC. Using an EBVaGC mouse model and a [125I] fialuridine (FIAU)-based lytic activation imaging system, we evaluated gemcitabine-induced lytic activation in an in vivo system and confirmed the efficacy of gemcitabine-GCV combination treatment. This viral enzyme-targeted anti-tumor strategy may provide a new therapeutic approach for EBVaGCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.